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Outlines

What is BCS Theory?

% The Nobel Prize in Physics 1972

"for their jointly developed theory of superconductivity,
usually called the BCS-theory"

John Bardeen Leon Neil Cooper John Robert
Schrieffer

Original publication: Phys. Rev. 108, 1175 (1957)
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What is BCS Theory?

o First “working” microscopic theory for superconductors.
@ It's a mean-field theory.

@ In it's original form only applied for conventional
superconductors.
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Cooper-Pairs Formation of Pairs
Origin of Attractive Interaction

Formation of Pairs

Let's assume the following things:

o Consider a material with a filled Fermi sea at T = 0.
@ Add two more electrons that

e interact attractively with each other but
e don't interact with the other electrons except via
Pauli-prinziple.
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Formation of Pairs

Look for the groundstate wavefunction for the two added electrons,
which has zero momentum:

Wolri,ra) = Y (ke &™) (111) - |U1))
k

The total wavefunction has to be antisymmetric with respect to
exchange of the two electrons. The spin part is antisymmetric and
therefore the spacial part has to be symmetric.

|
= 8k = 8—k-
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Formation of Pairs

Inserting this into the Schrodinger equation of the problem leads to
the following equation for the determination of the coefficients gy
and the energy eigenvalue E:

(E—2a)gc= Y Viwa,
k>kr

where 1
ka/ = Q/ V(I’)ei(k/_k).rdl’

(r: distance between the two electrons, Q: normalization volume,
ex: unperturbated plane-wave energies).



Cooper-Pairs Formation of Pairs
Origin of Attractive Interaction

Formation of Pairs

Since it is hard to analyze the situation for general Vi, assume:

Vi — -V | EF <e < EF+ hwc
= 0 , otherwise

with hw. a cutoff energy away from Ef.
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Formation of Pairs

With this approximation we get:

1 1 EF+hwe
2 Zz E:N(O)/ 2d€E
k>kr €k~ Er €
1 2EF — E + 2hw,
— ZN(O)I
o NO) "( 2EF — E >

If N(0)V < 1, we can solve approximativly for the energy E

E ~ 2Ef — 2hw.e WOV < 2EF.
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Origin of Attractive Interaction

Negative terms come in when one takes the motion of the ion
cores into account, e.g. considering electron-phonon interactions.
The physical idea is that
@ the first electron polarizes the medium by attracting positive
ions;
@ these excess positive ions in turn attract the second electron,
giving an effective attractive interaction between the electrons.

11 /52
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BCS Theory

Having seen that the Fermi sea is unstable against the formation of
a bound Cooper pair when the net interaction is attractive, we
must then expect pairs to condense until an equilibrium point is
reached.

We need a smart way to write down antisymmetric wavefunctions
for many electrons. This will be done in the language of second
quantization.
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BCS Theory

Introduce the creation operator cio, which creates an electron of
momentum k and spin o, and the correspondig annihilation
operator ¢x,. These operators obey the standard anticommutation
relations for fermions:

{Cka, C'-(rlo_,} = Cko—Cl-(lr/a./ 2 CllLla./ Cko = Okk'Ogo’
{Ckaa Ck/a’} =0= {Cl]:a’ CIJ(r’a’}'

Additionally the particle number operator ny, is defined by

Nk = CiaCkU‘

14 /52



The model Hamiltonian
b

BCS Theory

1|Lu\ ation of the conde

The model Hamiltonian

We start with the so-called

pairing-hamiltonian

H = Z €k Nko + Z VkICkTC le_IlCIT’
ko

presuming that it includes the terms that are decisive for
superconductivity, although it omits many other terms which
involve electrons not paired as (k T, —k ).

15/52
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BCS Theory

The model Hamiltonian

We then add a term —uM, where p is the chemical potential,
leading to

H— uN = Z{knkg = Z VleiTCile—llCIT-
ko ki

The inclusion of this factor is mathematically equivalent to taking
the zero of kinetic energy to be at y (or Ef).
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BCS Theory

Bogoliubov-Valatin-Transformation

Define:

bk = <C—kJ,CkT>
Because of the large number of particles involved, the fluctuations
of c_k| o about these expectations values by should be small.
Therefor express such products of operators formally as
C k| Ckp = bk + (C—lekT — bk)

and neglect quantities which are bilinear in the presumably small
fluctuation term in parentheses.
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BCS Theory

Bogoliubov-Valatin-Transformation

Inserting this in our pairing Hamiltonian we obtain the so-called

model-hamiltonian

Hm — ;LN = kaczockg + Z Vkl(cliTCiklbl =+ bltC_un — b:b|)
ko ki

where the by are to be determined self-consistently.
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Bogoliubov-Valatin-Transformation

Defining further
A== Viab == Vi {c_i o)
| |

leads to the following form of the

model-hamiltonian

H/\/] - MN = kaczackg — Z(AkCIITCikL aF Aic_lekT — Akbi)
ko k
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The model Hamiltonian
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Calculation of the condensation energy

Bogoliubov-Valatin-Transformation

This hamiltonian can be diagonalized by a suitable linear
transformation to define new Fermi operators ~:

Bogoliubov-Valatin-Transformation

Ck1 ul):’YkT + Vk’YT_kl

Cikl = —VlkaT-l-UwT_kl

with |u]? + [v|?> = 1. Our “job” is now to determine the values of
Vi and uy.
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BCS Theory

Bogoliubov-Valatin-Transformation

Inserting these operators in the model-hamiltonian gives
= 1N = g (el = PO + 304 7-w0)
k

20wl + 20—k e + 20k VWiT’Yikl)

+ 3 ((Awuevic + D) O + 9470 - 1)
k

A = AR Kk
+(AfvE — Aku&)’yiT'yT_kl + Akbﬁ) .
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BCS Theory

Bogoliubov-Valatin-Transformation

Choose uy and v so that the coefficients of y_i vt and VETViki

vanish.

* 2 2 Ai
= 2§kUka+Aka —Akuk :O ?
k

A¥v\ 2 Ay
= < kk) +2£k< kk)_|Ak|2:0

Uk 23

Ay

:kk =/ + |Ak]? — & = B — &
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The model Hamiltonian
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BCS Theory

Bogoliubov-Valatin-Transformation

This gives us an equation for the v and ug as

1 €k
2 2
—1— ——(1=5K).
|Vk| |Uk| 2( Ek)
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The model Hamiltonian
Bogoliubov-Valatin-Transformation

BCS Theory Calculation of the condensation energy

The BCS ground state

BCS took as their form for the ground state
W) = [T (s + weceli) 10)
k

where |ug|? 4+ |w|? = 1. This form implies that the probability of
the pair (k T, —k |) being occupied is |vg|?, whereas the probability
that it is unoccupied is |u|? = 1 — | |?.

Note: |W) is the vacuum state for the v operators, e.g.

Wi V) =0=v_k |Vq)
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Calculation of the condensation energy

We can now calculate the groundstate energy to be

(V| H—pN W) = 23 &g+ Viauwuv
k K

- T§)-

k

The energy of the normal state at T = 0 corresponds to the BCS
state with A =0 and Ex = [&]|. Thus

(Vo H—pN W) = > 26

|k|<ke
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The model Hamiltonian
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BCS Theory Calculation of the condensation energy

Calculation of the condensation energy

Thus, the condensation energy is given by

oo B 5 (o9

[k|>k |k|<kr
2 A2
= 2 _ 2k ) _ =
2. (“ Ek> V
[k|>k
_ (& 1N(O)A2 AT —EN(O)Az
v 2 v 2
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e Finite Temperatures
o Excitation Energies and the Energy Gap
@ Determination of T,
@ Temperature dependence of the energy gap
@ Thermodynamic quantities
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Excitation Energies and the Energy Gap

With the above choice of the ux and v, the model-hamiltonian
becomes

Hu — N =Y (6 — B+ Dacbf) + D Belrpma + vh 7-):
k k

Ex =/ A+ &2
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Excitation Energies and the Energy Gap
Determina f
Temperature

Finite Temperatures Thermo

Excitation Energies and the Energy Gap

E /A

Figure: Energies of elementary excitations in the normal and
superconducting states as functions of &.
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Excitation Energies and the Energy Gap

Inserting the ~ operators in the definition of Ay gives

Ay = *Z Via (c_iyar)
|

= = Vv <1 — - WT_U’Y—|¢>
|

= — Z Viauy v(l — 2f(5))

= —Z Vk|27Eltanh7
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Excitation Energies and the Energy Gap

Using again the approximated potential Vi = —V/, we have
Ax = Ay = A and therefor

1 1 tanh(5Ex/2)
Vo2 B

k

This formula determines the critical temperature T.!

31/52



Finite Temperatures

Determination of T,

The critical temperature T, is the temperature at which Ax — 0
and thus Ex — &. By inserting this in the above formula,
rewriting the sum as an integral and changing to a dimensionless
variable we find

1 Behwe/2 tanh x 2e7
wow =, & "<wﬁc >

(v ~ 0.577...: the Euler constant)
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Determination of T,

Critical temperatur T,

kTe = B &~ 1.13hw e Y/NOV
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Finite Temperatures

Determination of T,

For small temperatures we find

hwe ~1/N
A= xofwe YNOV
2T Snh(1/N)V) <€ ’
which shows that T. and A(0) are not independent from each
other
A(0)

~ 1.764

2
kT, — 1.13
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Temperature dependence of the energy gap

Rewriting again

N |

1 1 tanh(5Ex/2)
Vo zk: Ex '

in an integral form and inserting Ex gives

hwe tanh L3(£2 4+ A2)1/2
1 _/ anh 53(£° + A%) de,
0

NV (e2+ A2y

which can be evaluated numerically.
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Temperature dependence of the energy gap
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Figure: Temperature dependence of the energy gap with some
experimental data (Phys. Rev. 122, 1101 (1961))
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Temperature dependence of the energy gap

Near T, we get

Temperature dependence of A

A(T) T\ 2
2174 (1- = T~T
a0 () T

which shows the typical square root dependence of the order
parameter for a mean-field theory.
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Finite Temperatures

Thermodynamic quantities

With A(T) determined, we know the fermion excitation energies
E. = w/fﬁ + A(T)?. Then the quasi-particle occupation numbers

will follow the Fermi-function f = (1 + e”fx)~1, which determine
the

electronic entropy for a fermion gas

Ses = —2k > ((1 = f)In(1 = f) + fiIn f).
k
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Figure: Electronic entropy in the superconducting and normal state.
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Thermodynamic quantities

Given Ses(T), we find the

of 1 dA2
Coe = — 2ﬂkz —% ( E2 + 3 dﬁ)

In the normal state we have

2
Con = %N(O)kZT
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Finite Temperatures

Thermodynamic quantities

We expect a jump in the specific heat from the superconducting to
the normal state:

~ 9.4N(0)k> T,

AC = (Ces — Cen)l 7. = N(0) (—;/TAQ)

Tc
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Thermodynamic quantities
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Figure: Experimental data for the specific heat in the superconducting
and normal state (Phys. Rev. 114, 676 (1959))
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Type | superconductors
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Figure: Phase diagram of a Type | superconductor
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Finite Temperatures

Vortex-State

§ The Nobel Prize in Physics 2003

"for pioneering contributions to the theory of
superconductors and superfluids"

Alexei A.
Abrikosov

Original publication: Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)
(Sov. Phys. - JETP 5, 1174 (1957))
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Type | and Type Il superconductors

By applying Ginzburg-Landau theory for superconductors one finds
two characteristic lengths:

© The Landau penetration depth for external magnetic fields A
and

@ the Ginzburg-Landau coherence length £, which characterizes

the distance over which 1) can vary without undue energy
increase.
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Type | and Type Il superconductors

Define

Ginzburg-Landau parameter

K

>

By Iinearizing the GL equations near T, one can find:

k < —=: Type | superconductor

Kk > —=: Type Il superconductor

Sl S
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Type Il superconductors
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Figure: Phase diagram of a Type Il superconductor

47 /52



Finite Temperatures Thermodynamic quantities

As a solution of the GL equation, one could find the following form
of the orderparameter:

+ imn

1« m(ixy — y?)
V(x,y) = N Z eXP<w1%w2

n=—oo
(2 1
+/7r( n+1)
w1

1/4
B w1 Swo
M= (23602 =P (F w1 ))

(x +iy) + iwgn(n + 1)>
w1
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Figure: Square and triangle symmetric state of the vortex lattice in a
density plot of |W|2.
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Finite Temperatures

rtex-State

Figure: Square and triangle symmetric state of the vortex lattice in a 3D
plot.
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Summary

@ An attractive interaction between electrons will result in
forming bound Cooper pairs.

The model-hamiltonian can be diagonalized using a
Bogoliubov-Valatin-Transformation.

The order parameter in a superconductor is the energy-gap A.

BCS-Theory gives a prediction of the critical temperature T,
and the energy gap A(T).

@ Vortices will be observed in Type Il superconductors.
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Temperature
Finite Temperatures Thermodynamic quantities

The END

Thank you for your attention!

Are there any questions?
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