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Formation of Pairs

Let’s assume the following things:

Consider a material with a filled Fermi sea at T = 0.

Add two more electrons that

interact attractively with each other but
don’t interact with the other electrons except via
Pauli-prinziple.
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Formation of Pairs

Look for the groundstate wavefunction for the two added electrons,
which has zero momentum:

Ψ0(r1, r2) =
∑
k

(
gke

ik·r1e−ik·r2
)

(|↑↓〉 − |↓↑〉)

The total wavefunction has to be antisymmetric with respect to
exchange of the two electrons. The spin part is antisymmetric and
therefore the spacial part has to be symmetric.

⇒ gk
!
= g−k.

7 / 52



Outlines
Cooper-Pairs
BCS Theory

Finite Temperatures

Formation of Pairs
Origin of Attractive Interaction

Formation of Pairs

Inserting this into the Schrödinger equation of the problem leads to
the following equation for the determination of the coefficients gk

and the energy eigenvalue E :

(E − 2εk)gk =
∑
k>kF

Vkk′gk′ ,

where

Vkk′ =
1

Ω

∫
V (r)e i(k′−k)·rdr

(r: distance between the two electrons, Ω: normalization volume,
εk: unperturbated plane-wave energies).
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Formation of Pairs

Since it is hard to analyze the situation for general Vkk′ , assume:

Vkk′ =

{
−V , EF < εk < EF + ~ωc

0 , otherwise

with ~ωc a cutoff energy away from EF .
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Formation of Pairs

With this approximation we get:

1

V
=

∑
k>kF

1

2εk − E
= N(0)

∫ EF +~ωc

EF

dε

2ε− E

=
1

2
N(0) ln

(
2EF − E + 2~ωc

2EF − E

)
.

If N(0)V � 1, we can solve approximativly for the energy E

E ≈ 2EF − 2~ωce
− 2

N(0)V < 2EF .
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Origin of Attractive Interaction

Negative terms come in when one takes the motion of the ion
cores into account, e.g. considering electron-phonon interactions.
The physical idea is that

the first electron polarizes the medium by attracting positive
ions;

these excess positive ions in turn attract the second electron,
giving an effective attractive interaction between the electrons.
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BCS Theory

Having seen that the Fermi sea is unstable against the formation of
a bound Cooper pair when the net interaction is attractive, we
must then expect pairs to condense until an equilibrium point is
reached.
We need a smart way to write down antisymmetric wavefunctions
for many electrons. This will be done in the language of second
quantization.
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BCS Theory

Introduce the creation operator c†kσ, which creates an electron of
momentum k and spin σ, and the correspondig annihilation
operator ckσ. These operators obey the standard anticommutation
relations for fermions:

{ckσ, c
†
k′σ′} ≡ ckσc†k′σ′ + c†k′σ′ckσ = δkk′δσσ′

{ckσ, ck′σ′} = 0 = {c†kσ, c
†
k′σ′}.

Additionally the particle number operator nkσ is defined by

nkσ ≡ c†kσckσ.
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The model Hamiltonian

We start with the so-called

pairing-hamiltonian

H =
∑
kσ

εknkσ +
∑
kl

Vklc
†
k↑c

†
−k↓c−l↓cl↑,

presuming that it includes the terms that are decisive for
superconductivity, although it omits many other terms which
involve electrons not paired as (k ↑,−k ↓).
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The model Hamiltonian

We then add a term −µN , where µ is the chemical potential,
leading to

H− µN =
∑
kσ

ξknkσ +
∑
kl

Vklc
†
k↑c

†
−k↓c−l↓cl↑.

The inclusion of this factor is mathematically equivalent to taking
the zero of kinetic energy to be at µ (or EF ).

16 / 52



Outlines
Cooper-Pairs
BCS Theory

Finite Temperatures

The model Hamiltonian
Bogoliubov-Valatin-Transformation
Calculation of the condensation energy

Bogoliubov-Valatin-Transformation

Define:

bk ≡ 〈c−k↓ck↑〉

Because of the large number of particles involved, the fluctuations
of c−k↓ck↑ about these expectations values bk should be small.
Therefor express such products of operators formally as

c−k↓ck↑ = bk + (c−k↓ck↑ − bk)

and neglect quantities which are bilinear in the presumably small
fluctuation term in parentheses.
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Bogoliubov-Valatin-Transformation

Inserting this in our pairing Hamiltonian we obtain the so-called

model-hamiltonian

HM − µN =
∑
kσ

ξkc
†
kσckσ +

∑
kl

Vkl(c
†
k↑c

†
−k↓bl + b∗kc−l↓cl↑ − b∗kbl)

where the bk are to be determined self-consistently.
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Bogoliubov-Valatin-Transformation

Defining further

∆k = −
∑

l

Vklbl = −
∑

l

Vkl 〈c−k↓ck↑〉

leads to the following form of the

model-hamiltonian

HM − µN =
∑
kσ

ξkc
†
kσckσ −

∑
k

(∆kc
†
k↑c

†
−k↓ + ∆∗

kc−k↓ck↑ −∆kb
∗
k)
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Bogoliubov-Valatin-Transformation

This hamiltonian can be diagonalized by a suitable linear
transformation to define new Fermi operators γk:

Bogoliubov-Valatin-Transformation

ck↑ = u∗kγk↑ + vkγ
†
−k↓

c†−k↓ = −v∗kγk↑ + ukγ
†
−k↓

with |uk|2 + |vk|2 = 1. Our “job” is now to determine the values of
vk and uk.
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Bogoliubov-Valatin-Transformation

Inserting these operators in the model-hamiltonian gives

HM − µN =
∑
k

ξk

(
(|uk|2 − |vk|2)(γ†k↑γk↑ + γ†−k↓γ−k↓)

+2|vk|2 + 2u∗kv
∗
kγ−k↓γk↑ + 2ukvkγ

†
k↑γ

†
−k↓

)
+

∑
k

(
(∆kukv

∗
k + ∆∗

ku
∗
kvk)(γ

†
k↑γk↑ + γ†−k↓γ−k↓ − 1)

+(∆kv
∗
k

2 −∆∗
ku

∗
k
2)γ−k↓γk↑

+(∆∗
kv

2
k −∆ku

2
k)γ

†
k↑γ

†
−k↓ + ∆kb

∗
k

)
.
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Bogoliubov-Valatin-Transformation

Choose uk and vk so that the coefficients of γ−k↓γk↑ and γ†k↑γ
†
−k↓

vanish.

⇒ 2ξkukvk + ∆∗
kv

2
k −∆ku

2
k = 0

∣∣∣∣·∆∗
k

u2
k

⇒
(

∆∗
kvk

uk

)2

+ 2ξk

(
∆∗

kvk

uk

)
− |∆k|2 = 0

⇒
∆∗

kvk

uk
=

√
ξ2k + |∆k|2 − ξk ≡ Ek − ξk
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Bogoliubov-Valatin-Transformation

This gives us an equation for the vk and uk as

|vk|2 = 1− |uk|2 =
1

2

(
1− ξk

Ek

)
.

23 / 52



Outlines
Cooper-Pairs
BCS Theory

Finite Temperatures

The model Hamiltonian
Bogoliubov-Valatin-Transformation
Calculation of the condensation energy

The BCS ground state

BCS took as their form for the ground state

|ΨG 〉 =
∏
k

(uk + vkc
†
k↑c

†
−k↓) |0〉

where |uk|2 + |vk|2 = 1. This form implies that the probability of
the pair (k ↑,−k ↓) being occupied is |vk|2, whereas the probability
that it is unoccupied is |uk|2 = 1− |vk|2.
Note: |ΨG 〉 is the vacuum state for the γ operators, e.g.

γk↑ |ΨG 〉 = 0 = γ−k↓ |ΨG 〉
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Calculation of the condensation energy

We can now calculate the groundstate energy to be

〈ΨG |H − µN |ΨG 〉 = 2
∑
k

ξkv
2
k +

∑
kl

Vklukvkulvl

=
∑
k

(
ξk −

ξ2k
Ek

)
− ∆2

V

The energy of the normal state at T = 0 corresponds to the BCS
state with ∆ = 0 and Ek = |ξk|. Thus

〈Ψn|H − µN |Ψn〉 =
∑
|k|<kF

2ξk
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Calculation of the condensation energy

Thus, the condensation energy is given by

〈E 〉s − 〈E 〉n =
∑
|k|>kF

(
ξk −

ξ2k
Ek

)
+

∑
|k|<kF

(
−ξk −

ξ2k
Ek

)
− ∆2

V

= 2
∑
|k|>kF

(
ξk −

ξ2k
Ek

)
− ∆2

V

=

(
∆2

V
− 1

2
N(0)∆2

)
− ∆2

V
= −1

2
N(0)∆2
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Excitation Energies and the Energy Gap

With the above choice of the uk and vk, the model-hamiltonian
becomes

HM − µN =
∑
k

(ξk − Ek + ∆kb
∗
k) +

∑
k

Ek(γ
†
k↑γk↑ + γ†−k↓γ−k↓).

Ek =
√

∆2
k + ξ2k
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Excitation Energies and the Energy Gap
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Figure: Energies of elementary excitations in the normal and
superconducting states as functions of ξk.
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Excitation Energies and the Energy Gap

Inserting the γ operators in the definition of ∆k gives

∆k = −
∑

l

Vkl 〈c−l↓cl↑〉

= −
∑

l

Vklu
∗
l vl

〈
1− γ†l↑γl↑ − γ†−l↓γ−l↓

〉
= −

∑
l

Vklu
∗
l vl(1− 2f (El))

= −
∑

l

Vkl
∆l

2El
tanh

βEl

2
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Excitation Energies and the Energy Gap

Using again the approximated potential Vkl = −V , we have
∆k = ∆l = ∆ and therefor

1

V
=

1

2

∑
k

tanh(βEk/2)

Ek
.

This formula determines the critical temperature Tc !
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Determination of Tc

The critical temperature Tc is the temperature at which ∆k → 0
and thus Ek → ξk. By inserting this in the above formula,
rewriting the sum as an integral and changing to a dimensionless
variable we find

1

N(0)V
=

∫ βc~ωc/2

0

tanh x

x
dx = ln

(
2eγ

π
βc~ωc

)
(γ ≈ 0.577...: the Euler constant)
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Determination of Tc

Critical temperatur Tc

kTc = β−1
c ≈ 1.13~ωce

−1/N(0)V
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Determination of Tc

For small temperatures we find

1

N(0)V
=

∫ ~ωc

0

dξ

(ξ2 + ∆2)1/2

⇒ ∆ =
~ωc

sinh(1/N(0)V )
≈ 2~ωce

−1/N(0)V ,

which shows that Tc and ∆(0) are not independent from each
other

∆(0)

kTc
≈ 2

1.13
≈ 1.764
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Temperature dependence of the energy gap

Rewriting again
1

V
=

1

2

∑
k

tanh(βEk/2)

Ek
.

in an integral form and inserting Ek gives

1

N(0)V
=

∫ ~ωc

0

tanh 1
2β(ξ2 + ∆2)1/2

(ξ2 + ∆2)1/2
dξ,

which can be evaluated numerically.
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Temperature dependence of the energy gap

Figure: Temperature dependence of the energy gap with some
experimental data (Phys. Rev. 122, 1101 (1961))
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Temperature dependence of the energy gap

Near Tc we get

Temperature dependence of ∆

∆(T )

∆(0)
≈ 1.74

(
1− T

Tc

)1/2

, T ≈ Tc ,

which shows the typical square root dependence of the order
parameter for a mean-field theory.
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Thermodynamic quantities

With ∆(T ) determined, we know the fermion excitation energies

Ek =
√
ξ2k + ∆(T )2. Then the quasi-particle occupation numbers

will follow the Fermi-function fk = (1 + eβEk)−1, which determine
the

electronic entropy for a fermion gas

Ses = −2k
∑
k

((1− fk) ln(1− fk) + fk ln fk).
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Thermodynamic quantities

Figure: Electronic entropy in the superconducting and normal state.
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Thermodynamic quantities

Given Ses(T ), we find the

specific heat

Ces = −β dSes

dβ
= 2βk

∑
k

− ∂fk
∂Ek

(
E 2

k +
1

2
β

d∆2

dβ

)
In the normal state we have

Cen =
2π2

3
N(0)k2T .
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Thermodynamic quantities

We expect a jump in the specific heat from the superconducting to
the normal state:

∆C = (Ces − Cen)|Tc
= N(0)

(
−d∆2

dT

)∣∣∣∣
Tc

≈ 9.4N(0)k2Tc
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Thermodynamic quantities

Figure: Experimental data for the specific heat in the superconducting
and normal state (Phys. Rev. 114, 676 (1959))
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Type I superconductors

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

H

T/Tc

M-O-State

Normal-State

Figure: Phase diagram of a Type I superconductor
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Vortex-State

Original publication: Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)
(Sov. Phys. - JETP 5, 1174 (1957))
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Type I and Type II superconductors

By applying Ginzburg-Landau theory for superconductors one finds
two characteristic lengths:

1 The Landau penetration depth for external magnetic fields λ
and

2 the Ginzburg-Landau coherence length ξ, which characterizes
the distance over which ψ can vary without undue energy
increase.
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Type I and Type II superconductors

Define

Ginzburg-Landau parameter

κ ≡ λ

ξ

By linearizing the GL equations near Tc one can find:

κ < 1√
2
: Type I superconductor

κ > 1√
2
: Type II superconductor
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Type II superconductors
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Figure: Phase diagram of a Type II superconductor
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As a solution of the GL equation, one could find the following form
of the orderparameter:

Ψ(x , y) =
1

N

∞∑
n=−∞

exp

(
π(ixy − y2)

ω1=ω2
+ iπn

+
iπ(2n + 1)

ω1
(x + iy) + iπ

ω2

ω1
n(n + 1)

)

N =

(
ω1

2=ω2
exp

(
π
=ω2

ω1

))1/4
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Vortex-State
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Figure: Square and triangle symmetric state of the vortex lattice in a
density plot of |Ψ|2.
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Figure: Square and triangle symmetric state of the vortex lattice in a 3D
plot.
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Summary

An attractive interaction between electrons will result in
forming bound Cooper pairs.

The model-hamiltonian can be diagonalized using a
Bogoliubov-Valatin-Transformation.

The order parameter in a superconductor is the energy-gap ∆.

BCS-Theory gives a prediction of the critical temperature Tc

and the energy gap ∆(T ).

Vortices will be observed in Type II superconductors.
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The END

Thank you for your attention!

Are there any questions?
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