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Power-Law Behavior of the Bak-Tang-Weisenfeld Sandpile Model
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We study the self-organized criticality (SOC) of the famous Bak-Tang-Weisenfeld (BWT) sandpile
model. As the simplest known model that exhibits SOC, understanding this model is a significant
first step to understanding many natural systems that exhibit SOC, such as earthquakes and rainfall.
First, we simulate the typical, widely-used sandpile model and observe that it does support the
hypothesis that this model shows perfect SOC in the limit of an infinite system. Second, we modify
the sandpile to mitigate some of the finite-sized e↵ects, and we find that model’s results also indicate
that an infinite BTW sandpile exhibits SOC.

I. INTRODUCTION

Many natural systems exhibit what has been termed
“fractal structure.” Here, fractal structure is taken to
mean that some correlation functions for that system
show non-trivial power-law behavior. For example, in
mountain ranges, the height profile can be characterized
by how �h(R), the relative di↵erence in height between
two points separated by distance R, varies with R [1]. It
happens to follow the power-law equation:

D
[�h(R)]2

E
/ R

�x

. (1)

Here < > denotes averaging over di↵erent spatial
points at a fixed horizontal separation R. The parameter
x is some non-trivial exponent.

Another natural system that exhibits such behavior is
earthquakes. Guttenberg and Richter were the first to
discover that the statistical distribution of earthquakes
follows a power-law [2]. The frequency of earthquakes
of total energy E is found to vary as E�z, where z is
approximately 2 [3]. Likewise, it has recently been shown
that the frequency of rain of a given intensity also follows
a power-law (for roughly five orders of magnitude) [1].

A firm understanding of fractal structures thus might
allow us to calculate the critical exponents of these im-
portant natural phenomena, and not simply search for
them experimentally. This is our motivation for develop-
ing a simplified, tractable model that exhibits the same
long-ranged correlations with power-law decay.

Note that systems possessing such power-law correla-
tions are said to have critical correlations. The term
critical correlaion is used for historical reasons, because
these types of correlations were first studied in equilib-
rium statistical mechanics near some critical phase tran-
sition. Historically, in order to observe such critical phe-
nomena in equilibrium systems, one would need to fine-
tune at least one physical parameter (such as tempera-
ture or pressure) to a specific critical value.

However, studying such finely tuned systems provides
little insight into natural processes (such as mountain
range formation and earthquake frequency), because nat-
ural processes are rarely so fine-tuned. In the case of

mountain ranges, for example, the actual height distri-
bution is a result of many factors (including plate tech-
tonics and erosion), and the temperature has fluctuated
greatly over the formation time. Thus, for more physical
relevance to these natural phenomena, our model should
not need fine-tuning.
In their famous paper, Bak, Tang, and Weisenfeld

(BTW) proposed a model that had all of these desired
properties. It was simple, showed power-law correlations,
and naturally evolved to its critical state (where these
power-law correlations arise). That is to say, their model
was simple and showed self-organized criticality (SOC).
These two traits make it a useful tool for studying fractal
structures in nature.
Their model was a sandpile. The motivation for the

model goes something like the following. If one drops
sand onto a two-dimensional table, the sand will pile up,
forming a sort of cone. However, there is a maximum
steepness that this sandpile can have. We will say that
there is a critical angle ✓

c

. Once the pile reaches this ✓
c

nearly everywhere and one tries to add more sand, the
added sand will cause an avalanche, bringing the sand
to some other part of the pile that is not too steep.
In this way, sandpiles naturally evolve from less than
✓

c

everywhere to being ✓

c

everywhere. Once they have
reached the maximum steepness, they are roughly stabi-
lized there. Their behavior at this critical angle is char-
acterized by stretches of seemingly no response to addi-
tional sand interspersed by avalanches that range in size
from a few grains to a↵ecting the entire system.
To again highlight the similarity between this model

and nature, earthquakes exhibit similar build-up/relax
behavior. For earthquakes, stress builds up due to tech-
tonic motion gradually, but is released in bursts of various
sizes [3].
The focus of this paper is to explore the interesting

properties of the BTW sandpile model. Interestingly,
even though it is widely believed that the BTW model
shows SOC in the limit of infinite system size, it is ac-
tually an open problem to prove that this is the case.
Thus, in particular, we will illustrate that this sandpile
model indeed exhibits SOC (i.e. naturally evolves to a
state that shows power-law correlations). We do this by
numerically simulating a simplified sandpile model and
studying its properties. We also explore methods for im-
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proving this sandpile model to better exhibit power-law
behavior.

II. MODEL

The sandpile model we use obeys the following rules.
The simulation occurs on a two-dimensional square lat-
tice of side-length L. Thus there are N = L

2 total sites
in this latice. We begin the simulation with a flat surface
Z(x, y). Here Z indicates how many grains are present
at the site given by the coordinates x and y. Every time
step we add one grain to a random site, where all sites
in the lattice are equally probable for selection.

Z(x, y) = Z(x, y) + 1 (2)

Equation (2) is the driving force in this model. After
we have dropped this grain, we check that the number
of grains in this cell obeys Z(x, y) < 4. If it does, then
we continue to the next time step (selecting a random
site and dropping another grain). However, if that site
satisfies the instability rule equation (3), then that site
topples.

Z(x, y) � 4 (3)

When a site topples, it loses four grains, and each of
its four neighbors gain one grain.

Z(x, y) = Z(x, y)� 4

Z(x± 1, y) = Z(x± 1, y) + 1

Z(x, y ± 1) = Z(x, y ± 1) + 1

(4)

After the topple occurs, one or more of the neighbors
might now be unstable from the additional sand. Each
unstable site then topples in the same way, obeying equa-
tion (4). This proceeds until no sites are unstable. Note
that if any sites on the edge of the lattice topple, some
sand will “fall o↵ the edge,” leaving the system. For ex-
ample, if a site on the left edge topples, it will lose four
grains and each of its three neighbors will gain one grain.
The fourth grain is lost.

When we add a grain and at least one topple results,
that is called an avalanche. We speak of the size of an
avalanche (s) as how many topples occured. So if only one
topple occured, s = 1 for that avalanche. If dropping the
grain caused a chain reaction in which 120 sites toppled,
s = 120. Note that if one site topples twice or more in
the same avalanche, both topples do count towards the
avalanche size.

Here we supply an example of an avalanche. Sup-
pose that our lattice size is 4x4. Also suppose that, af-
ter a few time steps, the lattice configuration looks like:

FIG. 1: BTW Sandpile simulation on a 81x81 lattice. As
we drop grains onto the lattice, the average grains per site in-
creases linearly until around 13,000 grains have been dropped.
Then the lattice settles at roughly 2.1 grains per site, at which
point it is said to have reached it critical state.

Now suppose that we advance this configuration
one time step that adds a grain to the site sec-
ond from the right and second from the top.
That site will have four grains and thus topple.

Two of the neighbors are now themselves unstable,
and thus topple. This results in further toppling.

Finally, the lattice has arrived at a stable state, where
no further topplings need to occur. This avalanche was
size s = 4, because four total topplings occured.
That is all there is to this model. All of its complex,

interesting properties arise from these simple rules that
we laid out above. One such interesting property is that
the lattice will stabilize itself at around 2.1 average grains
per site, as illustrated in figures 1 and 2.
This behavior is readily explained by the sandpile ex-

hibiting SOC: the sandpile naturally evolves to the state
of roughly 2.1 grains per site, which is its critical region,
at which point avalanches of all di↵erent sizes occur spo-
radically. Since it is this critical region of SOC that we
are interested in, we will be sure to sample statistics from
our model only after it has reached its critical state.
However, note that this natural evolution to a stable
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FIG. 2: Zoomed in plot of the average grains per site as a
function of grains added. Note the existence of deviations
from the equilibrium value. These fluctuations reflect the
nature of the critical state, where grains pile up steadily and
avalanche sporadically.

state is not su�cient for SOC. Indeed, the defining fea-
ture of systems with SOC is that they exhibit some sort
of power-law correlation in their stable state. It is widely
believed that this sandpile model shows such a power-
law correlation with respect to the size of its avalanches.
That is, it is thought that equation (5) holds, where s is
avalanche size and P(s) is the probability of the resulting
avalanche being that size given that we place a grain on
a site and that site topples.

P (s) = cs

�a (5)

Here c and a are some constants. It will be our ul-
timate goal to numerically simulate this sandpile model
and inspect whether its avalanches really are power-law
distributed.

Here, we will analytically argue why the avalanche sizes
are expected to follow equation (5). First, note that the
expected avalanche size will be of the order of the system
size. That is,

hsi ⌘
X

sP

L

(s) � cL (6)

where L is the length of system and c is some scaling
constant. If we take our system size to infinity, L ! 1,
and we defiine

P1(s) = lim
L!1

P

L

(s) (7)

then its straightforward to see that

hsi ⌘
Z

sP1(s)ds = 1. (8)

Such a divergent expectation value can only be gener-
ated by probability distributions that fall o↵ more slowly

FIG. 3: Log-log plot of the probability of avalanche size.
Larger system size correlates with a longer region of power-
law behavior.

than s

�2. Furthermore, for our probability distribution
to be normalized,

Z
P1(s)ds = 1. (9)

Therefore our probability distribution must converge to
zero more quickly than s

�1. With these two constraints,
it is reasonable to assume that our probability distribu-
tion takes the form of equation (5), where 1 < a < 2.
Note that this logic inherently utilizes the fact that we

are interested in infinite systems. This is an issue because
we can only simulate finite systems. To work around
this issue, we assume that finite sized systems will show
the correct (power-law) behavior for avalanches that are
small compared to their system size, and will show finite-
sized e↵ects for larger avalanches. Therefore we hope to
show that increasing the system size causes our results
to converge to the desired power-law form.

III. RESULTS

The first test simulation we ran was the typical one
described in the methods section. The probability of each
avalanche size was plotted for di↵erent system sizes in
figure 3 below. Note that distributions of the form P =
cs

�a appear visually as lines on log-log plots.
Figure 3 supports our expectation that finite-sized

sandpiles have power-law distributions for avalanches
that are small compared to the system size. However,
the probability of avalanches of order system size squared
(the total number of elements) drops to zero rapidly.
This is expected, since avalanches that are larger than
the number of sites are extremely rare. They require
some number of sites to topple more than once, which is
relatively di�cult to make happen.
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FIG. 4: Log-log plot of the probability of avalanche size for
the modified sandpile. As before, larger system size correlates
with a longer region of power-law behavior. Note here that
the regions of power-law behavior are longer than those in
figure 3, so the finite sized e↵ects have indeed been reduced
slightly.

In order to improve our statistics and further reduce
the finite-sized e↵ects, we modified the standard BTW
sandpile model. In particular, we minimize the e↵ects
of avalanches starting near the edge. Such avalanches
have di↵erent statistics from those that start in the bulk,
and in an infinitely sized system, all avalanches start in
the bulk. Avalanches that start near corners have an
amplified version of this problem.

Thus, first, we eliminate corners by closing the top
boundary to the bottom boundary. Note that we can-
not simultaneously close the left and right boundaries
because then the sand would have no way to escape the
lattice (and avalanche size would quickly diverge). Sec-
ond, on even grain drops we can place grains anywhere on
the lattice (as normal). However, on odd grain drops we
only place grains along the middle-most column (where
everywhere along the column is equally likely). Addi-
tionally, we only consider avalanches that are started by
odd grain drops. In this way, we only count avalanches
that start with significant space on all sides. Note that
choosing which avalanches we will count does not a↵ect
the fact that the distribution should be power-law, since
the argument made with equations (6) through (9) still
holds.

With these adjustments, the distributions change to
those in figure 4. An interesting feature of figure 4 is
the distortions that occur in the plots as the power-law
region shifts to the more-rapidly falling region. These dis-
tortions arise from the finite-sized e↵ects of these closed
y-bounderies, and are due to the statistical correlations
these closed boundaries cause in avalanches that span
the entire system. They do not a↵ect our statistics, since
these distortions occur around the rapid fall-o↵, and we
are not interested in that region to begin with. More-
over, the largest system sizes (L = 81 and 161) do not

TABLE I: The critical exponent a from equation (5) for both
the standard BTW and modified BTW sandpiles plotted in
figures 3 and 4.

L Standard Modified
11 0.9914± 0.0133 0.9302± 0.0086
21 1.0278± 0.0023 0.9892± 0.0006
41 1.0218± 0.0010 1.0258± 0.0007
81 1.0348± 0.0004 1.0463± 0.0004
161 1.0500± 0.0004 1.0633± 0.0004

show significant distortions, further illustrating that the
distortions are only finite-sized e↵ects and not real errors
in this modification of the model.
We used gnuplot to interpolate the data in figure 4

to functions of the form (5) in order to find the value
of the critical exponent a. We only used the avalanche
sizes that were clearly in the power-law region for this
interpolation, so as not to bias the functions with the
non-power-law fall o↵. For example, in the case of L =
161, we interpolated from s = 1 to s = 2000. For L = 81,
we interpolated from s = 1 to s = 1000.
Table 1 tabulates the values of a we found for the dif-

ferent system sizes and sandpiles.
Finally, we return to the question ”Does the BTW

sandpile show SOC in the limit of infinite system size?”
To answer this question with our results, we need to em-
ploy finite-size analysis. That is, we need to carefully
examine how our data is changing with system size, and
determine if it is actually correct to assume that, in the
infinite limit, the sandpile shows a perfect power-law.
As is typical for this type of finite-size analysis, we

make the claim that there are two ”components” to fig-
ures 3 and 4. One is the power law component, respon-
sible for the linear region of the graphs. The other is
the exponential-damping component, which is responsi-
ble for the quick fall-o↵ after the linear region. We can as-
sume this exponential- damping component is of the form
D(s) / exp[�s/s⇤(L)], where s⇤(L) is the characteristic
length of the damping term for a given system length L.
A qualitative inspection of figures 3 and 4 suggests that
s⇤(L) increases monotonically with L (without reaching
any sort of asymptote). If we can show this quantita-
tively, we will have shown that our results support the
conclusion that the BTW Sandpile exhibits SOC.
First, we fit the exponential regions of figures 3 and

4 to functions of the form D(s) / exp[�s/s⇤(L)]. We
make sure to start the range of our fit where the linear
fit ended. For example, for L = 81 we fit a line from
s = 1 to s = 1000. Now, we fit the dying exponential
from s = 1000 to s = 30000. (We choose that upper
bound because P (s) vanishes there). Second, we compile
and examine the resulting function s⇤(L). Our results
are in table II.
From table II, we can see that s⇤(L) diverges with

L. Thus taking L to infinity also sets the characteris-
tic length of the exponential-damping to infinity. This
implies that, in the infinite size limit, the probability dis-
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TABLE II: The values of s⇤(L) found from fitting D(s) /
exp[�s/s⇤(L)] to the exponentially-damped regions of P(s)
in figures 3 and 4.

L Standard Modified
11 20.56± 0.25 39.20± 0.95
21 100.00± 0.14 203.48± 0.61
41 500.00± 1.23 1000.00± 3.579
81 2000.00± 3.14 5000.00± 18.73
161 10000.00± 11.96 15000.00± 19.04

tribution is a perfect power-law.

IV. SUMMARY AND CONCLUSIONS

We have seen that the finitely-sized BTW sandpiles
exhibit power-law distributions of avalanche sizes to a
certain size. After that size, the distribution is damped
exponentially. We have also seen that increasingly large
sandpiles exhibit power-law distributions to increasingly
large cuto↵s before the damping dominates. When
we analyzed how the avalanche probability distribution
might look in the infinite system size limit, we found that

the characteristic damping inherent to finite-sized sys-
tems disappears. This supports the hypothesis that the
infinite BTW sandpile model shows a purely power-law
distribution of avalanche sizes (and thus exhibits SOC).
Furthermore, we found increasingly better approxi-

mate values for the critical exponent in table I. Our best
estimates were around a = 1.05, which both lies in our
desired range (1 < a < 2) and is the currently accepted
value [4]. Unfortunately, this value is much lower than
that of earthquakes and other natural phenomena. This
means, mathematically, that large events are relatively
more likely in the sandpile than they are in natural phe-
nomena. This does limit the physical relevance of the
BTW sandpile, but it is still useful as the arguably sim-
plest model that exhibits SOC. Many have designed im-
provements to the sandpile that increase its critical ex-
ponent without removing its SOC. It would be wise to
study those in future research.
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In this paper we will investigate percolation phase transitions in two dimensional space using
numerical simulations and finite-size scaling analysis. For the purposes of this study we will only
consider site percolation for square lattices. The program used to do the numerical simulations
implements the Leath algorithm to grow the clusters, and the Hoshen-Kopelman algorithm for
labeling the clusters to determine if the system percolates. To complete the study, simulations were
performed on a number of di↵erent (finite) size lattices and compared using finite-size scaling to
determine the optimal value of the percolation threshold.

I. INTRODUCTION

In mathematics, percolation theory describes the be-
havior of connected clusters in a random graph. Perco-
lation theory has many practical applications in nature
stretching from modeling oil seepage to forest fires. The
general problem goes as such: If a liquid is poured on top
of some porous material, will the liquid be able to make
its way through the pores from top to bottom? This
problem can be modeled in one of two ways, using bond
percolation or site percolation. For bond percolation we
would create a graph of n x n verticies (for the 2D case
with a square lattice, the problem can be done for any
dimension or lattice shape) where each edge between ver-
ticies can either be open with a probability p, or closed
with a probability 1 - p. For site percolation we would
create the same n x n graph, except this time each verti-
cie (site) can be open with a probability p or closed with
a probability 1 - p. The question to be answered for both
of these scenarios would be: for a given p, what is the
probability that an open path exists from top to bottom?
[1, 2] Figure 1 shows the di↵erence between the two. In
this study we will only be considering site percolation on
square lattices.

FIG. 1: These pictures show the di↵erence between bond and
site percolation. Bond percolation considers the lattice edges
as the relevant entities, while site percolation considers the
lattice verticies as the relevant entites [2].

II. PERCOLATION THEORY

The section presented below is a small background on
percolation theory following the work presented reference
[3].
If we take a square grid and occupy sites with a prob-

ability p we will notice that for small values of p the sys-
tem we will have mostly isolated occupied sites. As we
increase the value of p we will start to see isolated clus-
ters emerge (if two neighboring sites are occupied we call
them a cluster). As the value of p continues to increase
these clusters will begin to merge and at a certain value of
the occupance probability, called the percolation thresh-
old (pc), one cluster will begin to dominate and span the
system. Above the value pc all the other clusters will
be absorbed into the dominating cluster until p=1 where
every site on the lattice is occupied. The value pc de-
pends heavily on the dimensionality of the problem and
the shape of the lattice. For an infinite lattice if p<pc the
system will never percolate, and if p>pc then the system
will always percolate.
This behavior where the system goes through a sud-

den change at a certain value is known as a phase transi-
tion. Phase transitions are common in other branches of
physics. For example a magnet can lose its magnetiza-
tion when heated to a certain temperature, or ice melting
into water at a specific temperature. For non-infinite sys-
tems this step function behavior gets ”smeared” out into
a continuious function. The smaller the system the more
”smeared” the behavior gets. Extracting the informa-
tion about the infinite system from finite systems will be
discussed in a later section. It has been shown that prop-
erties of these systems close to the phase transition can
be described in very simple terms.
For values of p greater than pc but less than 1 not

all occupied sites are in the infinite (spanning) cluster.
We define a function P (p) to be the probability that an
occupied site is in the spanning cluster. For values of
p<pc P (p) is obviously 0, because there is no spanning
cluster, but for values of p>pc P (p) can be described in
analytical terms.

P (p)⇠(p� pc)
� (1)

This relation is known as a power law or scaling law
and the exponent � is known as a critical exponent. An
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extreamly useful feature of these scaling laws is that it
only depends on the dimensionality of the space being ex-
amined, and is independent of lattice shape or whether
it is site or bond percolation. This property is known
as universality. A consequence of universality is that the
large scale behaviours of these sytems can be described
by mathematical relationships which are independent of
small scale construction. This means we can study a wide
variety of systems without needing to worry about the
details of each individual system. An important point
to note is that while the scaling laws and critical ex-
ponents posses the property of universality, the perco-
lation threshold does not. The percolation threshold is
extremely dependent on the shape of the lattice and the
style of percolation (bond or site). For a two dimen-
sional system � =5/36. There are many other critical
exponents that can be defined which describe the prop-
erties of a system at or near the percolation threshold,
but the discussion of these is outside the scope of this
study.

Here we will describe one more critical exponent that is
useful to the application described above. First we define
a two point correlation function g(r) as the probability
that if one point is in a cluster then another point a
distance r away is in the same cluster. This function
typically has an exponential decay given by a correlation
length (⇠).

g(r)⇠e�r/⇠ (2)

For low values of p the correlation length is small (clus-
ters typically have a size of one or two), it will continue
to increase with p until the percolation threshold, when
the spanning cluster dominates. The spanning cluster is
infinite in size (for an infinite lattice), so the cluster size
will diverge. To examine values of p greater than the per-
colation threshold we must remove the spanning cluster
from our caluclations or it will dominate and be the only
cluster considered. As p increases above pc more clus-
ters get absorbed into the spanning cluster causing the
”typical” size of the remaining clusters to decrease. This
behavior of increasing until the threshold, where it di-
verges, then decreasing can be described mathematically
as

⇠ ⇠ (| p� pc |)�⌫ (3)

where ⌫ is another critical exponent with the value of
4/3 for two dimensions. As with the connectivity expo-
nent (�) it has the property of universality.

So far we have only considered an infinite lattice in our
discussion. What happens if the lattice is finite?

III. FINITE SIZE SCALING

The material in the following section follows the sec-
tions with the same names in reference [3].

FIG. 2: [3]This image shows that as L increases the ”smear-
ing” of the sharp transition is decreased.

The problem of how to deal with a finite lattice is
known as finite size scaling. Consider a square lattice
of size L. If we calculate the probability P (p) that the
system will percolate as a function of the occupancy prob-
ability p we will find that we no longer get a sharp transi-
tion like expected in the infinite case. Instead, the sharp
transition gets ”smeared out”. The amount of ”smear-
ing” that occurs is inversely proportional to the size of
the system L (Figure 2).
This phenomenon is similar to other thermodynamic

phase transition where small systems have ”smeared”
transition. We can describe this smearing in simple
mathemeatical terms. First we look at the two length
scales of the problem: the system length and the corre-
lation length. If the system length is much larger than
the correlation length the clusters dont notice the finite
boundaries and the system behaves like an infinite sys-
tem. Conversly when the cluster size ”sees” the bound-
aries a new behavior must be introduced. For this reason
the important parameter must be the dimensionless ratio
of these two lengths ⇠/L. Then for a given system size L
the probability takes the form

P (p, L) = fL[(p� pc)L
1/⌫ ] (4)

where fL is some function. Now consider how the be-
havior of the system changes under an arbitrary change
in size. Let L ! kL. Under this change of scale we
expect the essetial behavior to remain the same, that is
P (p, k, L)! c(k)P (p, L). The only function that has this
property is the power law, so we can write

P (p, L) = LAF [(p� pc)L
1/⌫ ] (5)

where F is a universal function and A is an exponent
to be determined. To determine A we must consider the
asymptotic behavior of P. As L ! 1 we must obtain the
critical law for the infinite system. Therefore F [z] ! z�

for large L. To get rid of the L dependence we must have
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FIG. 3: [3]This image shows scaled curves for di↵erent values
of L all falling on one universal curve.

A = ��/⌫. Therefore the finite size scaling law can be
written as

P (p, L) = L��/⌫F [(p� pc)L
1/⌫ ] (6)

If we plot L�/⌫P against (p�pc)L1/⌫ for several values
of L all the curves should lie on top of each other to form
a single universal curve(Figure 3). This is of great use, as
we can now determine the behavior of a system we have
not simulated from the behavior of the universal curve.

IV. NUMERICAL METHODS

To find the percolation threshold pc for a two dimen-
sional square lattice numerical simulations were used.
The program used to perform the simulations would grow
a large amount of clusters for a given occupation proba-
bility p, then determine what percent of these clusters
percolated. This would be repeated several times for
a range of occupation probabilites and several system
sizes, and then averaged to determine errors in the data.
These averages, along with their error bars, would then
be plotted as a graph of Percolation Probability (P ) as a
function of occupation probability (p). Once these were
plotted the region around the point where the curves in-
tesetect would be noted. Then the procedure would be
repeated for a smaller range of values for p (around the
intersection point )with a smaller step size until the de-
sired accuracy for pc had been achieved. The result is
then checked by graphing the scaled curves and making
sure they fall on one universal curve.

To grow the clusters the Leath algorithm was used,
the basic steps of which go as follows [4]

1) For a L x L system intialize an L+1 x L+1
lattice where every space is marked as undefined except
the edges, which are marked as free.
2) Occupy the center element and record its four neigh-
bors.
3) Choose one neighbor and calculate a random number

Graph 1.png

FIG. 4:

n, if n<p then the site is occupied, else it is free.
4) Determine the neighbors for the calculated site, if
a neighbor is undefined and not already on the list of
cluster neighbors, add it to the list.
5) Go to the next neighbor on the list and repeat steps
3 and 4 until no neighbors remain.

To determine if the cluster grown by the Leath
algorithm is percolating, we must first label the clusters
on the lattice. To do this we use the Hoshen-Kopelman
algorithm [5][4]

Raster scan the grid, every time an occupied site
is reached perform the following checks:
1) If the site has no occupied neighbors, it gets a new
label.
2) If the site has one occupied neighbor it inherits the
neighbors label.
3) If the site has two occupied neighbors choose the
lower label and make note that the two di↵erent labels
are a part of the same cluster
Once this is completed for the entire grid, raster scan it
again and collapse all labels that are part of the same
cluster.

Once all the clusters are labeled the leftmost column is
checked and all labels that correspond to occupied states
are recorded and then checked against the labels of the
rightmost column. If a label appears in both columns,
the system is percolating (This is for right to left percola-
tion, for up to down the leftmost column would be placed
with the first row, and the rightmost column would be
replaced with the last row).

V. RESULTS

For the first set of data systems with sizes L = 8,
L = 16, and L = 32 were analyzed for values of p between
0 and 1. The results are shown in Figure 4.
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Looking at Figure 4 values of P are chosen to be cal-
culated for p between .57 and .63 with a step size of .001.
The results are shown in Figure 5.

From Figure 5 values of P are chosen to be calculated
for p between .59 and .6 with a step size of .001. For
this simulation larger system sizes were considered. The
values of L tested were 32, 63, and 80. The results are
shown in Figure 6.

From Figure 6 the value of the percolation threshold
was determined to be .5925± .0005, which agrees within
error of the known value pc=0.59275 [4]. This value of
pc was tested by scaling the data for the L=8, 16, and
32 systems (to get an adeqete range of scaled p values).

The graph is shown in Figure 7.
The scaled curves were deemed to be overlapping close

enough to be within error. Due to the fact that these
curves are only an approximation the non scaled data is
decided to be more reliable for determining the value of
pc. The overlapping scaled curves are used as a check to
determine the plausablility of the conclusion drawn from
the non scaled data.

Graph 1.png

FIG. 7:

VI. SUMMARY AND CONCLUSIONS

In this paper we have described some of the basic con-
cepts of percolation theory, and analyzed the percolation
transition for site percolation on two dimensional square
lattices. The percolation threshold pc was determined
to be .5925± .0005, which agrees with the known value
within error. Percolation theroy has many useful applica-
tions that can range from modeling oil seepage to deter-
mining the robustness of a computer network [4]. At the
time this paper was completed all data had not yet been
collected for larger systems. Some work still remains to
be done to refine the estimate of pc to higher precision.
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A polymer chain can be modeled as a self-avoiding random walk (SAW) of length N , where N
represents the number of physical monomers in the chain. Unlike a regular random walk, where
spatial collisions are allowed, a self-avoiding random walk more accurately represents a physical
chain as lattice site occupancy is allowed to be at most one due to the finite dimensions of each
monomer. Usage of simple sampling and reptation algorithms allowed the calculation of attrition
constants associated with the generation of a SAW, critical end-to-end distance exponents, and radii
of gyration. These values are compared to those obtained in previous studies, and most notably,
with Flory theory.

I. INTRODUCTION

Polymers are ubiquitously present in a variety of fields,
including biophysics. Their study provides insight into
protein behavior, polymerization processes, and DNA [1].
The physical characteristics, such as the length, archi-
tecture, and elasticity, of a polymer largely a↵ect their
transport properties, or di↵usivity.

To build a rudimentary polymer, one can start with a
single monomer at a given position and successively con-
catenate more monomers with given bonding distances
and angles in a progressive sequence to form a chain-like
structure. Such a polymer can be used as a basis for
simulation studies where physical measurements would
prove di�cult.

II. MODEL

Imposing the conditions that bond distances between
monomers are equivalent, bond angles are constant at 90
degrees, and excluding monomer-monomer interactions,
we find that a a self-avoiding random walk (SAW) sim-
plistically models polymers and provides a mathematical
tool to study their properties. A SAW is a type of random
walk where any given lattice site may not be visited more
than once. This imposes an analogous physical constraint
to the inability of monomers to share the same volume
in space, thus reproducing volume exclusion.

It can be shown that the partition function for SAWs
on a lattice of arbitrary dimension takes the form

Z ⇠ µNN��1 (1)

in the asymptotic limit as N ! 1, where µ is the con-
nective constant and � is the critical exponent [2]. As
a partition function, this expression gives the scaling of
the number of SAWs of length N .

Additionally, an important property of these random
walks is the mean squared end-to-end distance, hR2i,
computed as the square of the linear distance between
the two opposite ends of a walk. The functional scaling
takes the form

hR2i ⇠ N2⌫ (2)

where ⌫ is known as the Flory exponent and depends on
the spatial dimension of the walk. Equivalently,

hR2i ⇠ N2/df (3)

where df is the fractal dimension of the walk. Through
mean-field theory, it can be shown that

df =
D + 2

3
(4)

where D is the spatial dimension of the walk [3]. This
Flory expression is exact for D = 1, D = 2, and D � 4,
since D = 4 is the upper critical dimension. In D = 3,
however, the Flory-predicted value of df = 5/3 falls short
of the empirical value of df = 1.689 [4].
Similarly to the mean squared end-to-end distance, the

radius of gyration [5] of a random walk,

R2
g ⌘ 1

N
h

NX

i

(ri � rCM )2i (5)

which gives a measure of the distance of points along
the walk from the center of mass of the walk, obeys the
scaling relation

Rg ⇠ N⌫ . (6)

III. METHODS

There are a variety of sampling methods to study the
scaling relations of self-avoiding random walks, includ-
ing simple sampling, reptation, and pivot algorithms [4].
However, this paper will only discuss simple sampling
and the reptation algorithm, which were both used to
produce and evolve random walks in arbitrary dimen-
sions (2- and 3-dimension examples of SAWs are shown
in Fig. 1).

A. Simple Sampling

Simple sampling of SAWs is achieved using an algo-
rithm that moves a “walker” in random directions until
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FIG. 1: An example of a 2-D self-avoiding random walk
for N = 24 (left) and a 3-D self-avoiding-random walk

for N = 35 (right).

a collision occurs. If the walk reaches the specified size
N , then we calculate and save the parameters of the walk.
The algorithm consists of the steps:

1. Start walker at origin

2. Take step in random direction

3. If this new location has been previously occupied,
reject walk and restart at origin

4. Repeat until number of accepted walks reaches
number of desired walks

The choice of a random direction in an arbitrary num-
ber of dimensions D in a “step” routine is done via:

// pick random integer in [0,2*D]

r = rand(2*D)

d = floor(r / 2)

s = r % 2

// shift position in dimension d

pos[d] += 2*s-1

Due to the rejection of unavailable walks, the simple
sampling method is ergodic in that it can sample all pos-
sible walks given adequate time.

If the previous location is stored along with each step,
then it is straightforward to prevent the walker from mov-
ing to its previously occupied lattice site. This allows for
an exponential performance improvement [6]. Despite
this, one sees that rejection is highly probable, especially
for walks with large N . This gives rise to the attrition
problem, which is the major drawback to the simple sam-
pling method for generating walks, as generation times
for large walks quickly become infeasible (Table I). An
attrition factor can be calculated as the ratio of success-
fully generated walks to the number of attempts (suc-
cesses + rejections), and is demonstrated in Figure 2.
Note that for D = 3, � ⇡ 7

6 [7]. In higher dimensions,
collisions become less of a problem due to the extra de-
grees of freedom that a walker may make use of during
the generation phase.
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FIG. 2: Attrition rate (calculated as the number of
successfully simply generated SAWs divided by the

total number of attempts) for various dimensions. Each
curve is fit with the form of the partition function,

Z ⇠ µNN��1.

TABLE I: Number of steps needed to achieve specified
attrition rate ar. Dimension 1 is not applicable to this
calculation because of the requirement that walkers may
not move backwards to their previous location, so the

attrition problem is trivially non-existent in 1
dimension.

D ar = 0.1 ar = 0.001 ar = 0.0001
2 26 46 66
3 45 82 119
4 79 150 220
5 134 259 384

Due to the rejection of unavailable walks, the simple
sampling method is ergodic in that it can sample all pos-
sible walks given adequate time.

B. Reptation Algorithm

The reptation algorithm, which gets its name from the
similarities of the walk to a snake, solves the attrition
problem plaguing the simple sampling method by allow-
ing multiple measurements of quantities for a single walk.
The algorithm relies on a reptation step which provides
a basis for the “slithering” of the walk:

1. Use simple sampling or create a custom walk with
desired length N

2. Reptate

(a) With 50/50 probability, choose one end of
walk (“head” or “tail”)
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(b) Take last step from chosen side and try to at-
tach it to opposite side with a random direc-
tion

(c) Check for a collision. If there is one, reject the
move and do not modify the walk; otherwise,
apply the move

(d) Calculate and store the desired parameters of
the walk

3. Repeat reptation until desired amount of statistics
reached

Unlike the simple sampling generation method, the
reptation algorithm is able to slowly slither out of poten-
tial trapping configurations, where the final end of the
walk is locked into the interior of the rest of the walk,
providing only a finite amount of steps until the walk is
forced to collide.

From this algorithm, only one simply-generated SAW
is needed to collect an arbitrary amount of data. One
sees that regardless of the success of a reptation step,
walk parameters can be calculated and stored, allowing
each reptation to serve as a new data point.

Since this method does not depend on the initial walk,
we can generate an arbitrary walk. This is necessary for
large N walks, when the initial simply-generated walk
is di�cult to attain even once. As an alternative, a
staircase-like snake has been used for this study. To gen-
erate the staircase, the walker takes a “forward” step in
each dimension randomly (Fig. 3).
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FIG. 3: Staircase 2-D SAW for N = 15 (left) and a 3-D
SAW for N = 50 (right).

Bias due to the choice of shape of this initial snake is
easily eliminated by performing many “thermalization”
reptations until measured quantities equilibrate. As an
example, the staircase snake would have a larger hR2i
value than a spiral snake initially. Allowing walks in
di↵erent dimensions to evolve over time (reptations), a
rough number of reptations associated with overall equili-
bration can be observed and later used to remove skewing
of hR2i values. Given a staircase starting state, Figure
4 shows that walks are su�ciently equilibrated after one
million reptations. Even after thermalization, some end-
to-end lengths of walks fluctuate wildly due to the na-
ture of a random walk, but retain an average close to the

desired value. Consequently, all walks used for data col-
lection were reptated at least 1.5 million times to ensure
thermalization before collecting any data.
Unlike the simple sampling method, the reptation al-

gorithm can rarely produce configurations from which
it cannot be extricated. This includes a double spiral,
where both ends of the walk are trapped within the rest
of the walk. As a result, the algorithm is not ergodic.
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FIG. 4: Thermalization for initial staircase SAWs with
N = 700. hR2i values are averaged over 2k reptations

with the same initial walk. Each point is also an
average over 10 runs. It is seen that somewhere between
220 and 221 reptations, an equilibrated value is reached
with expected fluctuations. Thus, it is su�cient to

discard the first 1.5 · 106 reptations before beginning the
collection of data. Note that the higher dimensional
walks thermalize faster than the lower dimensional
walks due to the increased degrees of freedom.

IV. RESULTS

With the framework for SAW generation using an ini-
tial staircase configuration and the reptation algorithm
to store large quantities of observables, the radius of gy-
ration and the end-to-end length can be measured with
high precision. In order to complement the computa-
tional power of the reptation algorithm, a high perfor-
mance computing cluster was used to produce walks of
length 10 to 1200 in increments of 10 with 1.5 million
thermalization reptations followed by 100 runs of data
collection with 2 million reptations each.
The radius of gyration of walks was computed as a

function of N for each dimension and displays expected
properties. In 1-D, the radius of gyration scales as N ;
in 4 dimensions and higher, it scales as

p
N , which is

consistent with the non-avoiding random walk radius of
gyration. In particular, making use of Eq. 6 with D = 3,
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TABLE II: Fractal dimension from fit and from Flory
expression (D = 1, 2, 4, 5) or precise calculation

(D = 3). D

D Fit df Theoretical df
1 1 1
2 1.3362 ± 0.0028 4/3
3 1.6912 ± 0.0039 1.689 ± 0.0086 (95% c.l.)
4 1.9001 ± 0.0045 2
5 1.9709 ± 0.0038 2

we obtain df = 1.6986± 0.0033, which is consistent with
a radius of gyration exponent ⌫ = 0.588 (df = 1.701) in
Ref. [8].
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FIG. 5: Radius of gyration (from the square root of Eq.
5) for walks of di↵erent dimensions as a function of
walk length. Power-law scaling of radius of gyration

explicitly shows the Flory exponent ⌫.

Plotting hR2i as a function of length yields a wealth
of information about the fractal dimension of these self-
avoiding random walks. Comparisons between obtained
values of the fractal dimension and those from Flory are
delineated in Table II. One dimension is trivially consis-
tent. Dimensions 2 and 3 are within approximately 1-� of
the Flory and precisely calculated values. Dimension 5 is
⇡8-� away from the mean-field theory value, and D = 4
appears to be inconsistent. However, as dimension 4 is
the upper critical dimension and the critical exponents
have the mean-field theory values, the obtained df val-
ues forD = 4, 5 require more statistics to deliver accurate
results.

V. SUMMARY AND CONCLUSIONS

A self-avoiding random walk provides a suitable math-
ematical model to provide a numerical alternative to
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FIG. 6: Average end-to-end distance for walks of
di↵erent dimensions are plotted against walk length.

Error bar sizes are comparable to point marker sizes, so
they are excluded for clarity. From the power scaling, a

critical exponent and fractal dimension have been
extracted. Note that the first few points have been

excluded from the fit in order to eliminate undesirable
finite-size e↵ects.

measuring certain observables of a polymer. Simple sam-
pling and the reptation algorithm both allow for gen-
eration of these walks and for their subsequent analy-
sis. However, the former is coupled with the problem
of exponential attrition. Using the latter, it was ulti-
mately shown that the fractal dimension calculated for
D = 1, 2, 3 agrees with Flory theory and empirical calcu-
lation, whereas D = 4, 5 are not fully consistent due to
the necessity for larger statistics.
Calculations described here may be improved in the

future with the addition of the pivot algorithm and more
statistics.
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Abstract: I examine the performance of several random number generator’s (RNG’s) in a square
(16x16) Ising lattice by computing the heat capacity (CV ) at the critical transition temperature (TC)
and compare to the analytical solution for a finite lattice. 108 sweeps using the Wol↵ Algorithm
over 15 independent lattices were computed to generate precise data points for the heat capacity
calculated for each independent lattice. The goal is to emulate and add to previously produced
results.

I. INTRODUCTION

Random number generators are crucial elements of
many computer-based simulations. The Monte Carlo
method is one such simulation technique which uses ran-
dom numbers to simulate, for example, the distribution
of energy in a spin-lattice, the temperature of a box, or
an integral which is too di�cult to solve by hand. The 2D
Ising model is one such situation in which Monte Carlo
sampling plays a major role. Individual spins in a 2 di-
mensional lattice are selected at random and are flipped
with a probability which also requires a random number
to be generated. There are several algorithms for spin
flipping including the Wol↵ Algorithm [1]. The Wol↵ Al-
gorithm selects spins at random and adds surrounding
spins to the cluster with probability

P(T ) = 1� exp(�2 ⇤ J/k
b

T ) (1)

Where J is the spin-spin coupling constant, and k

b

is the
Boltzmann constant, both of which are set to unity. T

is the absolute temperature of the lattice and at T =
T

C

= 2
ln(1+

p
2)

⇡ 2.269185, the probability for a spin to

be added to the cluster, and thus flip, is %58.58.

Studies have been done on several RNG’s [2], showing
the inadequacies of several ”good” generators, including
r250 and r1279. Using an iMac12.2 workstation, I car-
ried out extensive simulations on a 16x16 Ising square
lattice with periodic boundary conditions for which ex-
act results are known [3]. Several RNG’s were tested
including r250, r1279, randu, and drand48, which are all
generators available in the Gnu Scientific Library (GSL)
and were tested in [2]. drand48 is a linear congruential
algorithm, and r250, r1279, and randu are shift register
algorithms. A few other generators were tested as well
including the Mersenne Twister, Random123, fishman20,
knuthran2002, ran1, ran2, and ran3, all of which, with
the exception of Random123, are available in the GSL.
Random123 is available through DeShaw Research and
is a ”counter-based” RNG.

II. MODEL

The Partition function for a 2D Ising model is given
explicitly by:

Z

nm

(T ) =
1

2
(2sinh(2K)

mn
2 )

4X

i=1

Z

i

(K) (2)

where K = 1/T , and Z

i

are the partial partition func-
tions and are defined by:

Z1 =
n�1Y

r=0

2cosh(
1

2
m�2r+1),

Z2 =
n�1Y

r=0

2sinh(
1

2
m�2r+1),

Z3 =
n�1Y

r=0

2cosh(
1

2
m�2r),

Z4 =

n�1Y

r=0

2sinh(
1

2
m�2r),

(3)

where m is the length of the lattice and � is defined such
that

�0 = 2K + ln(tanh(K))

�

l

= ln(c
l

+ (c2
l

� 1)
1
2 ), l > 0

c

l

= cosh(2K)coth(2K)� cos(
l⇡

n

)

(4)

Given that the heat capacity is defined by:

C

V

= K

2(d2/dK2)ln(Z) (5)

we can calculate the exact value for the heat capacity
of a finite lattice. This calculation was performed in
Mathematica and gave me a heat capacity per spin of
CV (TC)

162 = 1.498704959.
The Hamiltonian of a 2D Ising model with no external

magnetic field is given by

H({s
i

}) = �
NX

i 6=j

J

ij

s

i

s

j

(6)
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FIG. 1: A cluster of positive spins on a 2D lattice is grown
using the Wol↵ Algorithm, and then flipped.

Where again, we set J

ij

= 1. From this, the energy of
the system at each step can be calculated, and the C

V

can be calculated from:

C

V

=
V ar(E)

T

2

=
< E

2
> � < E >

2

T

2

(7)

III. METHODS

A. Clustering Algorithm

The Ising Model used was a 16x16 matrix of spins with
periodic boundary conditions allowing for spins of spin
+1 or �1, and the algorithm used for flipping was the
Wol↵ Algorithm. 15 independent chains were generated
and swept through with the Wol↵ Algorithm 108 times.
The Wol↵ algorithm selects a spin from the lattice at ran-
dom and flips it, then checks the surrounding lattice sites
for spins with orientations equivalent to the original spin
orientation and flips them with a probability given by (1).
Successful flips incite further investigation of surrounding
lattice sites and a cluster is grown through a self refer-
encing function. The energy is calculated at each sweep
and the average energy and squared energy are recorded.
Not until the end of each independent markov chain is
the heat capacity recorded.

B. Random Number Generation

Each RNG was implemented individually and run in-
dependently. Being that random number generation is
used only when initializing the spin lattice, determining
the initial spin to flip, and proposing additions to the
cluster, replacing the generator was trivial. The error
and standard deviation for each set of heat capacities
recorded was calculated using the Jackknife method of
averaging, which removes each data point and averages

over the resulting array of data points for each value in
the array. The averages are obtained using the formula:

mean

i

=
(actualmean ⇤N � value

i

)

N � 1
(8)

and the error and standard deviation are calculated using
the average of these averages.

1. Mersenne Twister

The Mersenne Twister [4] algorithm for random num-
ber generation is based on the linear recurrance:

x

k+m

:= x

k+m

� (xu

k

|xl

k+1)A (9)

where n is the degree of recurrence, m is between 1 and
n, inclusive, � is the bitwise addition operator, and x

n

is
an initial seed. A is a matrix with values defined by the
algorithm. The period of a stream of random numbers is
219937 � 1

2. Random 123

Random 123 [5] is a counter based RNG, which returns
values based on a incremental counter and a key. The
generator is deterministic, in that if you give it the same
key, you will produce the same string of numbers. Given
an initial state vector s0 (defined by the key), random
sequences are generated by successive iteration of:

s

m

= f(s
m�1)

u

k,n

= g

k,nmodJ

(s[n/J])
(10)

where u is an output based on the key (k) and the counter
(n), and is given by an output function g, operating on
the state s, which is changed with each generation. The
key is initalized using any other random number gener-
ator. There are a few di↵erent counter-based random
number generators available in the Random123 library,
and the one used here is threefry4x64, which requires
only common bitwise operation in the calculation of the
stream. Threefry is also designed to perform well across
several architectures making it an attractive choice. The
period of a stream of random numbers is at least 2128.

3. r250 and r1279

R250 and r1279 are shift-register generators, whose se-
quences are defined by:

x

n

= x

n�103 ⌦ x

n�250

x

n

= x

n�418 ⌦ x

n�1279
(11)

respectively. The period of r250 is about 2250 and the
period of r1279 is about 21279
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FIG. 2: Generator averages with error bars shown for 1,3, and 5 � for each generator. Helmutrand and ran3 are several standard
deviations above the expected heat capacity, and are not shown. Similarly, r250 is several hundred sigma below the expected
heat capacity, and is not shown.

4. drand48, fishman20, and helmutrand

Drand48, fishman20, and helmutrand are linear con-
gruential generators, meaning that each generated num-
ber is produced through a linear function of the preceding
number, modulo some relatively prime number. Drand48
returns the upper 32 bits from each pseudo-randomly
generated sequence while fishman20 and helmutrand sim-
ply return integers. The sequence is updated via the al-
gorithm:

x

n+1 = (a ⇤ x
n

+ c)mod(m) (12)

where for drand48, using 48-bit unsigned arithmetic, a =
0x5DEECE66D, c = 0xB, and m = 248. The seed sets
the initial condition for the upper 32 bits and the lower 16
are set by default to 0x330E. In helmutrand, a = 65539,
c = 0, and m = INTMAX � 1.

5. randu

Randu is the linear congruential generator infamous
for producing highly correlated random numbers, as can
be seen when plotting triplets of the numbers in a 3D

space. The sequence of numbers is given by a simple
modular formula:

x

n+1 = (65539 ⇤ x
n

)mod(231) (13)

where x0 is specified by the seed. The period of this
generator is 229 numbers.

6. ran1, ran2, knuthran2002

Ran1, ran2, and knuthran2002 are combined recursive
generators, which return integers calculated using a lin-
ear combination of the previous two generated numbers,
modulo some relatively prime number, where the first
two numbers are set by the seed. Simply put:

x

n

= (a1xn�1 + a2xn�2)mod(m) (14)

7. ran3

Ran3 is a lagged Fibonacci generator which returns
integers based on a recurrance scheme by which the new
integer is calculated using two of the previous integers,
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combined using some operation, modulo some relatively
prime number. The most general form is:

x

n

= x

n�j

? x

n�k

mod(m) (15)

where the star denotes some operation.

IV. RESULTS

It can be seen, upon examination of the produced data
in Table 1 , that even generators with long periods do not
produce truly random numbers. Heat capacities com-
puted using the shift-register generators were lower than
the exact value, and in the case of r250, specifically, the
heat capacity was o↵ by over 1500�. The congruen-
tial generator drand48 and counter based generator Ran-
dom123 produced specific heats close to the exact value
and the Mersenne Twister produced values close to but
higher than the exact result, as shown in Figure 2. These
generators produced results that were correct to within
their error bars, in stark contrast with randu, helmutrand
and r250. The generators drand48 and knuthran2002
produce only slight less accurate heat capacities, and fish-
man20 produces not only accurate heat capacities, but
precise as well. ran1 and ran2 produced almost exact re-
sults, however ran 3 gave a heat capacity far above the
exact value, which was surprising, considering the simi-
larity of the algorithms.

V. SUMMARY AND CONCLUSIONS

Pseudo-Random Number Generators often have corre-
lations in the numbers produced. Sometimes, as in the
case of randu, these correlations can be easily discovered,

but often times these correlations are subtle and di�cult
to discover. The Wol↵ algorithm for spin flipping in a
2D Ising Model can be used to discover the existence
of these subtle correlations, and can often times expose
”high quality” generators to have systematic e↵ects on
the numbers produced. Counter based random number
generators such as Random123 and linear recurrance gen-
erators such as the Mersenne Twister can produce num-
bers which give fairly accurate representations of physical
phenomena, while shift register algorithms such as r250
and r1279 give results skewed towards higher energy and
lower specific heats. While r1279 still gives results only
slightly less accurate than Random123, it stands to rea-
son that, because it’s algorithm is similar to that of r250,
it may have similar correlation e↵ects however these ef-
fects would still be di�cult to find. The reasons for this
are subtle and are proposed to be correlations in the se-
quences which a↵ect the Wol↵ algorithm in a special way
[2]. Exact reasons are yet unknown and may be inter-
minably di�cult to discover, as the primary purpose be-
hind using the Wol↵ Algorithm to analyze random num-
ber generators is to discover their e�cacy at producing
truly random strings, not to discover the exact correla-
tions. It would be fair to say, that with deviations from
the actual heat capacity of several hundred �, you should
stay away from r250 and helmutrand if you want to run
a Monte Carlo simulation.
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TABLE I: Values for the heat capacity for fifteen independent runs with L = 16 at TC , obtained using the Wol↵ Algorithm.
The last number in each column, labeled ”�”, gives the di↵erence between the simulation value and the exact value, measured
in terms of the standard deviation of the simulation.

MT R123 r250 r1279 randu drand48 fishman helmut knuthran ran1 ran2 ran3
1.49908 1.49850 1.45514 1.49919 1.49781 1.49811 1.49867 1.50625 1.49820 1.49826 1.49847 1.50905
1.49925 1.49867 1.45617 1.49844 1.49796 1.49939 1.49876 1.50627 1.49910 1.49854 1.49857 1.50955
1.49856 1.49858 1.45529 1.49841 1.49784 1.49878 1.49857 1.50629 1.49878 1.49857 1.49889 1.50923
1.49858 1.49772 1.45488 1.49812 1.49794 1.49883 1.49851 1.50621 1.49821 1.49860 1.49830 1.50969
1.49877 1.49929 1.45571 1.49812 1.49789 1.49874 1.49881 1.50619 1.49844 1.49910 1.49834 1.51031
1.49935 1.49918 1.45520 1.49867 1.49801 1.49863 1.49874 1.50609 1.49895 1.49885 1.49860 1.50881
1.49846 1.49836 1.45534 1.49847 1.49807 1.49889 1.49891 1.50648 1.49856 1.49902 1.49891 1.51033
1.49849 1.49860 1.45492 1.49907 1.49810 1.49889 1.49883 1.50606 1.49869 1.49879 1.49882 1.50918
1.49864 1.49884 1.45561 1.49861 1.49682 1.49814 1.49905 1.50618 1.49791 1.49908 1.49870 1.50994
1.49911 1.49933 1.45583 1.49888 1.49787 1.49821 1.49903 1.50646 1.49822 1.49928 1.49894 1.50857
1.49893 1.49860 1.45546 1.49820 1.49787 1.49869 1.49889 1.50619 1.49845 1.49856 1.49796 1.50973
1.49857 1.49834 1.45528 1.49830 1.49811 1.49801 1.49890 1.50636 1.49796 1.49847 1.49853 1.50877
1.49828 1.49832 1.45499 1.49779 1.49684 1.49800 1.49887 1.50610 1.49890 1.49863 1.49860 1.50936
1.49941 1.49821 1.45487 1.49891 1.49813 1.49843 1.49866 1.50602 1.49884 1.49852 1.49962 1.50925
1.49928 1.49826 1.45579 1.49920 1.49759 1.49854 1.49850 1.50650 1.49892 1.49815 1.49875 1.50923

< C > 1.49886 1.49859 1.45537 1.49856 1.49779 1.49856 1.49879 1.50625 1.49855 1.4987 1.49867 1.50941
error 0.00015 0.0001 0.04333 0.00014 0.00091 0.00014 0.00008 0.00754 0.00015 0.000003 0.00003 0.01070
� 5.69048 �3.61301 �1548.33 �4.68286 �30.7763 �5.22109 6.50783 693.523 �5.85132 �0.170754 �1.24074 284.476
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We explore numerical solutions of the Lotka-Volterra model for Predator-Prey systems. Using
Matlab’s Ode45 numerical solver we examine solutions for two and three species predator prey
systems for di↵erent parameters and initial conditions. We also study how the stochastic solutions
to the two species predator prey and single species logistic equation compare to their continuous
deterministic counterparts.

I. INTRODUCTION

The Lotka-Volterra equations, developed indepen-
dently by Lotka and Volterra in the 1920’s, provide per-
haps the simplest model of predator-prey interactions.
The equations naturally extend the classic Logistic pop-
ulation model for single species first investigated by Ver-
hulst in the 1830’s, and provide a crude explanation of
observed phenomena in the natural world such as the
oscillations between populations of predator and prey
species [1]. In addition, the types of interacting sys-
tems described by the Lotka-Volterra Model also arise in
other fields of study such as economics [2] and chemistry
for which Alfred Lotka initially proposed the model [3].
For this reason, there is great mathematical interest in
studying the solutions to these equations.

The purpose of this study was to build on our previous
work done with population models and explore the result
of adding complexities that address the known limita-
tions of the deterministic equations as originally formu-
lated. We start this by revisiting previously solved sys-
tems and adding complexity in the form of stochastic pro-
cesses. This is a topic that has already been thoroughly
explored by previous scholars [4] [5], so we have lim-
ited the scope of this paper to a fairly simple model. We
also demonstrate the e↵ect of adding a time-delay to the
single species model in the method of Haberman [1] to
demonstrate the destabilizing influence such e↵ects have.
Analysis of the model with more than three species is
limited to seeking stable solutions of the continuous, de-
terministic Lotka-Volterra equations and examining the
results of adjusting the parameters of that model.

II. MODEL

A. The Stochastic Model: Wiener Processes

In stochastic modeling, it is fairly common to use some
numerical integration scheme, such as the Euler method,
while adding random fluctuations at each time step, but
there is wide variety in how these fluctuations are cho-
sen. We ran across several di↵erent stochastic models
for predator prey systems [4] [5], but chose to model
the Lotka-Volterra system using a Wiener Process, also
know as Standard Brownian motion. This decision was

made due to the simplicity of this stochastic model, and
the large amount of literature available on the subject
[6]. A Wiener process W, is a continuous time stochas-
tic process such that the di↵erence in value between two
time steps Wt1 � Wt2 is a normally distributed Gaus-
sian number with variance �t = t1 � t2. The di↵eren-
tial for this process is known as Guassian White Noise.
In practice, we can add this noise to our process and
scale the variance to the desired level by adding a term
�⇤randn⇤

p
�t ⇤ (CurrentPopulation) to the population

value for each time step we take while doing the integra-
tion. In Matlab, the function randn returns a psuedo-
random number drawn from the standard normal distri-
bution, and the�t represents the time elapsed in between
steps. This basic method is used to analyze the results
of several di↵erent noise levels.

B. Other Numerical Methods: MatLab Ode45
Solver

All numerical calculations and plots for this project
were done in the computational software Matlab. One of
the built in functions of this software worth highlighting
is Matlab Ode45. This is a di↵erential equation solver
that uses a 4th and 5th order Runge-Kutta method with
variable step sizes to integrate equations from a given
set of initial conditions. This solver was used to pro-
duce results for all deterministic equations in this paper.
Stochastic and delayed-di↵erence equation were solved
using the less sophisticated Euler method of integration.

C. The Logistic Equation

The continuous-time logistic equation is widely known
in the formulation

dN(t)

dt

= N(t)[a� bN(t)] (1)

Here the parameter a > 0 represents the growth rate of
the species whenever individual members of the popula-
tion do not compete with each other for food or resources.
The parameter b > 0 is a measure of how these competi-
tive interaction negatively impact total growth and serve
as a correction term for a system with finite resources.
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FIG. 1: Ode45 Solution of Continuous Logistic Equation: The
red, green, and blue lines represent three separate solutions
with initial populations of 2.0, 6.0, and 1.0 respectively. The
growth rates are a = 1.0 and b = �0.25 for all three species
giving each a carrying capacity of 4.0. The solutions for ini-
tial populations both above and below this equilibrium value
converge to this stable equilibrium.

This equation has one non-trivial equilibrium at a
b which

is stable and is known as the carrying capacity.
A representative output of the continuous equation is

displayed in Figure 1. The system behaves as expected
with all three populations asymptotically converging to
the carrying capacity of the system, regardless of their
initial values.

While the continuous equation is easy to analyze, more
realistic models for single species population growth are
possible if the di↵erential equation is broken into discrete
time steps and then numerically solved with simpler in-
tegration techniques. These di↵erence equations allow us
to build expected behaviors into our population models
such as time-delays between birth and resource depletion,
or random births and death.

To account for the time delay between birth and over-
consumption of resources, we used the time delay logistic
equation outlined by Richard Haberman [1]. The pro-
posed model is

dN(t)

dt

= N(t)[a� bN(t��t)]

written as a continuous equation. We can break this
down into an equation of finite di↵erence and solve for
future time steps based on past values.

Nt+1 = Nt +Nt[a� bNt�1]�t (2)

This form is readily integrated in with a simple for loop:

for i = 2:1:step_number

N(i+1) = N(i)*((a*step_size)-(b*step_size)*N(i-1))

+N(i);

end

Results of running this integration are plotted in Fig-
ure 2. The inclusion of time steps results in oscillatory
behavior that is not present in the continuous equation.

FIG. 2: Oscillatory Solution of the Time-Delayed Logistic
Equation: The solution to the time delayed equation is plot-
ted in blue on top of the solution of the continuous equation
in green. Parameters were a = 3.75, b = 0.05 and both popu-
lations started from an initial value of 50. The population of
the time-delayed equation initially overshoots the equilibrium
value of 75 and then over-corrects. It continues this motion
in a decaying oscillation around the equilibrium value.

In the interpretation of the model, this occurs because
the species continues to reproduce past the point that
the environment can sustain all members. It is only at
time �t after the population passes the equilibrium that
the species feels the constraints of limited resources. This
causes the death rate to increase to bring the population
down, but it again passes the equilibrium.

FIG. 3: Stochastic Solution of Logistic Equation: Initial pop-
ulation = 0.2, a = 0.75, b = 0.25 and � = 0.10 and �t = 0.33.
Each color represents an independent solution of the stochas-
tic process. The black line is a plot of the continuous solu-
tion. For each individual run, there is significant variation
from the deterministic solution, but there is still a preference
for stochastic solutions to stay around the equilibrium value.

Another expected behavior that we would like to build
into the our populations models is some sort of ran-
dom process to reflect the fact that certain processes,
such as births and deaths, are not deterministic. Sim-
ilar to the time-delay equation, we are able to write a
stochastic equation in an iterative fashion. Using the Eu-
ler method [7], we can write the discrete time di↵erence



3

equation:

N(t+1) = N(t)+N(t)[a�bN(t)]�t+�⇤N(t)⇤dW (t) (3)

using the for loop

for i=1:N

x(i+1)=x(i)+(x(i)*(a-b*x(i)))*h

+ sigma*x(i)*randn*sqrt(h);

end;

Here sigma is the parameter that controls the ”strength”
of the noise. Quite clearly, a larger value of sigma will
lead to greater fluctuations in the stochastic solution.

In Figure 3, we plotted one of the more visually ap-
pealing results, � = 0.10. From the plotted solutions of
the several trial runs we can see that our model creates
fluctuations in the population value compared to the de-
terministic solution. As time increases the deviation from
the deterministic solution increase as well. This is partic-
ularly apparent in the region from t = 0 to about t = 5.

D. Two-Species Lotka-Volterra Model

The Lotka-Volterra equations for two interacting
species are

dN1(t)

dt

= N1(t)[a� bN1(t)� cN2(t)]

dN2(t)

dt

= N2(t)[�k + �N1(t)]

(4)

In this formulation, N1 represents the prey species, and
N2 represents the predator species. The parameters a

and b in the prey equation have the same meaning as
in the Logistic model discussed above, and the new pa-
rameter c > 0 represents the additional death of prey
from predators feeding on them. In the equation for the

FIG. 4: Single Predator Single Prey System: This constitutes
the base Predator Prey System for this study. The blue line
indicates the size of the prey population and the green line
indicates the size of the predator population. Solutions ex-
hibit oscillatory behavior. The parameters for this system are
a = 1.0, b = 0.0065, c = 1.0, k = 1.0,� = 0.05.

FIG. 5: Stochastic Predator-Prey Population vs. Time; � =
0.05: Each color on the graph represent an individual run
of the test code plotted on top of the deterministic solution,
indicated by the bold black line. The top graph shows the
Prey Population vs. Time while the bottom graph shows the
Predator Population vs. Time.

predator, k > 0 is the rate at which predators die in the
absence of food and the term � > 0 is the growth of the
species based on the presence of prey.
Figure 4 shows that bounded oscillatory solutions to

the Lotka-Volterra equations exist over finite times. This
provides some support for the model as this behavior
has been observed for real biological systems, such as
the Lynx-Hare populations in North America [1]. This
plot also demonstrates that time-delays are not the only
possible cause for oscillations in population over time.
As in the case of the logistic equation we added

stochastic elements to the predator prey system by im-
plementing the following

for i=1:N

x(i+1)=x(i)+x(i)*(a - b*x(i) - c*y(i))*h

+sigma*x(i)*sqrt(h)*randn;

if y(i) < extinction

y(i+1) = 0;

else

y(i+1)=y(i)+y(i)*(-k+lamda*x(i))*h

+sigma*y(i)*sqrt(h)*randn;

end

end

Note that, in addition to adding random noise, we have
created a way for our predator to go extinct by includ-
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ing an if statement with an extinction threshold. This
is meant to reflect the physical case where there is no
longer enough members of the predator species to suc-
cessfully breed. The extinction threshold 0.05 was cho-
sen after experimentation showed that extinction for this
value was unlikely for small amounts of stochastic noise
(� = 0.05), but that for large �, extinction occurred fre-
quently enough to capture in our results. While the val-
ues of sigma we used were chosen for their mathemati-
cal convenience, showing that extinction of the predator
is a possible outcome verifies that the stochastic Lotka-
Volterra model might be a good fit for biological systems
if the sigma parameter is chosen more judiciously.

In Figure 5 stochastic solutions to the two species
predator prey equation are plotted along with the de-
terministic solution. Each color in this graph represents
a di↵erent trial of the stochastic solution. For small fluc-
tuations, � = 0.05, it does not appear likely that the
predator population will face extinction during the time
period analyzed. However, for � = 0.15 extinction is a
very real possibility. In Figure 7, we actually see the
predator denoted by the green line go extinct around
time step 25. Correspondingly, the prey population of
that same trial grows very rapidly after that time.

Another notable development in the high noise case
is that for one of the trials the stochastic predator and
prey populations get out of phase with the deterministic
solutions and the other trials. These sorts of deviation
is not seen in the lower noise cases and suggest that if
real populations were to be models in this way, great care
must be taken to choose a realistic noise coe�cient along
with the other parameters.

A good alternative view of the oscillatory nature of the
system is seen in the phase plane solutions of Figure 6.
There, the solutions for several di↵erent stochastic trials
are plotted on top of the deterministic solution.

FIG. 6: Stochastic Predator-Prey Phase Plane; � = 0.05:
The phase plane solutions of the results from Figure 5. Each
color on the graph represent an individual run of the test
code. The deterministic solution is plotted as a bold black
line. Without random fluctuations the result is a closed loop.
After fluctuation are added there is still orbiting behavior,
but the loops are no longer closed corresponding to the jagged
oscillations of the populations in time.

FIG. 7: Stochastic Predator-Prey Population vs. Time;
� = 0.15: Each color on the graph represent an individual
run of the test code plotted on top of the deterministic solu-
tion indicated by the bold black line. For this large amount
of noise wild deviations from the deterministic solution are
possible. We see in the predator population (and correspond-
ingly in the prey population) that the run represent by the
blue line is completely out of phase with the deterministic
solution after two periods. We also see that around time =
25 the predator population for the green run drops below the
extinction threshold. As a result the prey population after
this time grows dramatically.

E. Multiple-Species Lotka-Volterra Model

We can extend the predator-prey interactions of the
continuous Lotka-Volterra model simply by adding a new
di↵erential equation for a third species and establish-
ing the parameters by which it interacts with the other
species. A succinct way to write this is in the matrix
notation

d

dt

2

4
N1

N2

N3

3

5 =

2

4
N1 0 0
0 N2 0
0 0 N3

3

5

0

@

2

4
E1

E2

E3

3

5+

2

4
a11 a12 a13

a21 a22 a23

a31 a32 a33

3

5

2

4
N1

N2

N2

3

5

(5)

In this formulation, the parameters E1, E2, and E3

govern whether a species plays the role of a predator or
prey in the system. If Ei < 0 then species Ni is a preda-
tor, alternatively if Ei > 0 the species Ni is a prey. It
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FIG. 8: Stable Solution of Two Predator One Prey System:
A three species food chain where N1 is preyed upon by N2

who is in turn preyed upon by N3 who sits at the top of the
food chain. Initial population are N1(0) = 0.5, N2(0) = 1.0,
and N3(0) = 2.0. Parameter values are E1 = 1, E2 = �1,
E3 = �1, a11 = 0, a12 = �1, a13 = 0, a21 = 1, a22 = 0,
a23 = �1, a31 = 0, a32 = 1, a33 = 0.

FIG. 9: Phase Plane Cross Sections of Two Predator One
Prey System: A plot of the 2-dimensional phase planes of
the three species food chain examined in Figure 8. Here the
interaction parameters are kept constant while phase plane so-
lutions of di↵erent initial populations are plotted. The black
line represents the solution for initial population N1(0) = 0.5,
N2(0) = 1.0, and N3(0) = 2.0. All three initial populations
are then incremented by 0.5 and the equations are solved
again to produce the blue line. This is done again to pro-
duce the red and then green cases in accordance with the
legend. Changing the initial population results in a change of
shape in the phase plane

is not di�cult to see that this reduces to the two-species
model discussed earlier if E1 = a, E2 = �k, a11 = b,
a12 = c, a21 = �, a22 = 0, and N3 = 0, noting that we no
longer require aij > 0 as we did in the previous models.

For completeness, I will mention that we can generalize
to an arbitrary number of species using the equation.

d

dt

Ni = Ni(Ei +
j=3X

j=1

AijNj) (6)

However, because each parameter Ei and aij must be
individually selected, models contain more than three
species quickly become very painful to work with.

Interesting solutions for the multi-species model were
found for a three species food chain in which a top preda-
tor N3 preys on a middle predator N2 who hunts the prey
N1. A bounded solution for this type of system is plot-
ted in Figures 8 and 9. Figure 8 shows the populations
of each species as a function of time, and Figure 9 shows
2-Dimensional phase plane solutions of the system for
di↵erent initial population values. Figure 8 is probably
the best example of the Lotka-Volterra model producing
results that are in line with what one would intuitively
expect from a natural system. Initially, a lack of prey
leads to a high death rate among both predators. This
greatly increases the population of prey causing a growth
in the predator population until the number of prey de-
creases again. The three species then continue to follow
each other this way leading to closed loops in the phase
plane.
If we adjust the parameters to make the top predator

die o↵, we get the results in Figure 10. Again this results

FIG. 10: Two Predator One Prey System With Dying Preda-
tor: This is a three species food chain in which the top preda-
tor dies o↵ slowly, reducing it to the two species predator-
prey equation. The plot on top shows the population of each
species vs. time, while the bottom plot shows the populations
in 3-Dimensional phase space. As the population of N3 de-
clines in time, the solution in phase space spirals down to a
steady orbit in the N1, N2 phase plane. Initial population are
N1(0) = 0.5, N2(0) = 1.0, and N3(0) = 2.0. Parameter values
are E1 = 1, E2 = �1, E3 = �1, a11 = 0, a12 = �1, a13 = 0,
a21 = 1, a22 = 0, a23 = �1, a31 = 0, a32 = 0.88, a33 = 0.
Notice that only parameter a32 has changed from the case in
which all three predator coexisted without extinction.



6

FIG. 11: Bounded Solution of One Predator Two Prey Sys-
tem: Initial populations are N1(0) = 0.5, N2(0) = 1.0, and
N3(0) = 2.0. Parameter values are E1 = 1, E2 = 1, E3 = �1,
a11 = 0, a12 = 0.25, a13 = 0.25, a21 = �0.25, a22 = �0.25,
a23 = 0, a31 = �0.25, a32 = �0.25, a33 = 0.

of the Lotka-Volterra model agree with intuition. As the
population of the top predator goes to zero, the popula-
tions of the remaining two species settles into a cycle of
single-predator prey interaction. This is readily visual-
ized in 3-Dimensional phase space. As the top predator
dies o↵ the phase plane graph settles into a 2-Dimension
loop in the remaining species phase plane.

The last figure, Figure 11, shows the interaction of one
predator species with two prey species. The parameters
were chosen such that the predator would have no prefer-
ence for one species over the other, and that both species
felt the negative e↵ects of the predator in the same way.

The result is populations that initially oscillate in time,
but eventually settle into a stable equilibrium.

III. SUMMARY AND CONCLUSIONS

This paper covered a great number of scenarios while
working within the Lotka-Volterra model. Many of the
qualitative behaviors observed agree both intuitively
with what one expects for a biological predator-prey
model, and in the case of oscillatory solutions, with what
has been observed in nature. We also showed the model
can be refined further to reflect desired characteristics
of a biological system. Particularly, random fluctuations
or time-delays between resource depletion and decreased
birth rate can be incorporated into the model. However,
problems still remain in implementing these changes.
Choosing parameters to use when running the model
remains a challenge. We saw in the stochastic case that
solutions are highly dependent on the amount of noise
in the system. We also saw that oscillations in species
population can arise in multiple ways.
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We study the computational techniques on exact diagonalization of one-dimensional Hubbard
model(1DHM)[1, 2]. The model is reviewed for a system with L sites and fixed electron numbers
N" and N#. The dimension of matrix form of the Hamiltonian is greatly reduced using particle
and spin conservations, and translational symmetry. The ground state eigenvalues of 1DHM with
di↵erent electron numbers are calculated using Lanczos algorithm.

I. INTRODUCTION

One of the most successful descriptions of electrons in
solids is the band theory. It is based on reducing many-
body interactions to an e↵ective one-body description.
However, there are various situations of physical interests
where the band theory fails by construction. One of the
main motivations for studying the Hubbard model [3] is
that it is the simplest generalization beyond the band
theory description of solids.

The Hubbard model is used to describe the transitions
of solids between conducting and insulating. It is the sim-
plest model of interacting particles in a lattice involving
only two terms in the Hamiltonian: a hopping term be-
tween particles and an on-site interaction of each particle.
Although simple, the Hubbard model is able to capture
the gross physical features of many systems characterized
by more general interaction parameters. Recently, it has
been an interesting model for high temperature supercon-
ductivity [4] in two and higher dimensions. This model
can also be extended to describe interacting bosons in
lattice such as ultracold atoms [5].

In one dimension, this model is exactly solvable us-
ing Bethe ansatz [6]. For higher dimensions, one has to
seek for numerical methods. Mean field theory is a gen-
eral method for many models in condensed matter theory
but it is less accurate in lower dimensions since fluctua-
tions are ignored in the method. Exact diagonalization
method, on the other hand, can give essentially exact
numerical results to any dimensions although extensive
computer memory are used when the dimension and the
lattice size increase. The basic idea of exact diagonal-
ization is to reduce the dimension of the Hilbert space
of the Hamiltonian by using symmetries and iterative
methods, such as Lanczos algorithm [7]. The remarkable
feature of the Lanczos algorithm is that high accuracy of
ground-state eigenvalues can be obtained within a hun-
dred iterations.

In this paper, we study the eigenvalues of 1DHM us-
ing exact diagonalization method for the lattice size up
to L = 8. We show that the eigenvalues converge quickly
under the basic Lanczos algorithm. We also correct the
artificial degeneracy of the ground-state eigenvalues by
using a projection Lanczos algorithm which generates an
orthogonal set of Lanczos vectors. The structure of the
paper is as the following: in Sec. II, we briefly introduce

the Hamiltonian of 1DHM in the basis for a system with
L sites and fixed electron numbers N" and N# and an-
alyze how to apply translational symmetry in Sec. III,
for a further reduction of the Hilbert space dimension.
We use Lanczos algorithm to calculate the ground state
energy in Sec. IV.

II. BASIS CONSTRUCTION

A. The model

The Hamiltonian of the Hubbard model is given by

H = �t
X

<ij>,�

(c†i�cj� +H.c.) + U
X

i

ni"nj# (1)

which contains two parts: tight-binding Hamiltonian H0

and operator of the on-site interaction D.

H0 = �t
X

<ij>,�

(c†i�cj� +H.c.) (2)

D = U
X

i

ni"nj# (3)

It’s well known in condensed matter physics, tight-
binding part can be diagonal in the Bloch basis, while
on-site interaction in the Wainnier basis. Because of the
non-commutativity, Hubbard Hamiltonian can’t be di-
agonal in neither basises. In physics, tight-binding part
prefers to delocalize the electron in the form of plane
wave, while on-site interaction which counts the number
of doubly occupied sites favours localization. The Hub-
bard model may be understood as arising from the com-
petition between the two contributions. In convention,
the ratio u = U

4t is a measure for the relative contri-
bution of both terms and is the intrinsic, dimensionless
coupling constant of the Hubbard model.

B. symmetries

To be specific, let us derive all the general concepts
of basis construction for the Hubbard model on an
one-dimensional chain. For a single site i, the Hilbert
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space of the model (1) consists of four states,
(i)|0i means no electron at site i,
(ii)c†i# |0i means one down-spin electron at site i,

(iii)c†i" |0i means one up-spin electron at site i,

(iv)c†i"c
†
i# |0i two electron at site i.

Consequently, for a finite cluster of L sites, the full
Hilbert space has dimension 4L. This is a rapidly grow-
ing number, and without symmetrization we could not
go beyond L ⇡ 16 even on the biggest supercomputers.
Given a symmetry of the system, i.e. an operator A
that commute with H, the Hamiltonian will not mix
states from di↵erent eigenspaces of A. Therefore, the
matrix representing H will acquire a block structure,
and we can handle each block separately. The Hubbard
Hamiltonian (1) has a number of symmetries:

Particle number conservation: corresponds to global
gauge transformations. H commutes with total particle

Ne =
X

i,�

ni� (4)

Total spin conservation: corresponds to SU(2) symme-
tery. H commutes with all components of the total spin

S↵ =
1

2

X

i

X

mu,nv

c†iµ�
↵
µ⌫ci⌫ (5)

where �↵ denotes the Pauli matrices.
Particle-hole symmetry: corresponds to Shiba transfor-
mation symmetry.

Jsh
� = (c†L�� cL�)(c

†
L�1�+ cL�1�)...(c

†
2�� c2�)(c

†
1�+ c1�)

(6)
it only applies for even number of lattice sites H
Translational invariance: assuming periodic boundary
conditions, i.e., c†L� = c†0�, H commutes with the trans-
lation operator

T : c†i� ! c†i+1� (7)

Inversion symmetry: H is symmetric with respect to the
inversion

I : c†i� ! c†L�i� (8)

For the basis construction the most important of these
symmetries are the particle number conservation and
spin Sz conservation. Note that that both Sz = (N" �
N#)/2 and Ne = (N" + N#) is equivalent to the con-
servation of the total number of spin up and spin down
electrons, respectively.

C. an example

Let us start with building the basis for a system with
L sites and fixed electron numbers N" and N#. Beacuase

TABLE I: Complete basis of the Hubbard model, with L = 4,
N" = 3 and N# = 2.

no. " pattern no. # pattern

0 0111 = 7 0 0011 = 3
1 1011 = 11 1 0101 = 5
2 1101 = 13 2 0110 = 6
3 1110 = 14 3 1001 = 9

4 1010 = 10
5 1100 = 12

of the anticommutation relation of Fermion, we need to
define an order to guarantee the uniqueness. It is conve-
nient to first sort the electrons by the spin index, then
by the lattice index, i.e.,

c†3"c
†
2"c

†
0"c

†
3#c

†
1# |0i (9)

is a valid ordered state. This ordering ahs the advantage
that the bearest-neighbor hopping in the Hamiltonian
does not lead to complicated phase factors. Now we can

find all the basis states: there are

✓
L
N"

◆
ways of dis-

tributng N" up-spin electrons on L sites, and similarly,✓
L
N#

◆
ways of distributing N# down-spin electrons on L

sites. Hence, the total number of states is

✓
L
N"

◆✓
L
N#

◆
.

Summing up dimensions from all the (N", N#) blocks, we
obtain

LX

N"=0

LX

N#=0

✓
L
N"

◆✓
L
N#

◆
= 2L2L = 4L (10)

The biggest block has dimension

✓
L

L/2

◆
. This is a con-

siderably reduction than original dimension, in next sec-
tion, we will use translational invariance to reduce the
dimension by a factor of L
Then we need to implement the basis structure on a

computer. An e�cient way to represent a basis is using
one integer number and bit operations. From now on and
next section, we work with a lattice of L = 4 sites and
N" = 3, N# = 2. We can then translate the state in (9)
into a bit pattern, integer pattern as well

c†3"c
†
2"c

†
0"c

†
3#c

†
1# |0i ! (", ", 0, ")⌦ (#, 0, #, 0)

! 1101⌦ 1010

! |13i ⌦ |10i (11)

The complete basis is gien by all 24 pairs of the four
up-spin and six down-spin states, see Table I
Of course, we can further simplify the representation

to combine the two indices to an overall index n = i ·
2L + j. In my implementation, I didn’t use the overall
index representation.
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D. The Hamiltonian Matrix

Having found all basis states, now we apply the Hamil-
tonian (1) to basis to obtain the matrix elements, for our
simple state (9) we obtain:

" hopping ! �t(1011 + 1110)⌦ 1010

# hopping ! �t1101⌦ (0110 + 1100 + 1001� 0011)

Uterm ! U1101⌦ 1010 (12)

One tricky point in this part is the phase of 0011,

h1010|� tc†3#c0# |0011i = �t h0| c1#c3#c†3#c0#c
†
1#c

†
0# |0i

= t h0| c1#c†1#c3#c
†
3#c0#c

†
0# |0i

= t (13)

The minus signs arise because of periodic boundary
conditions. Whenever an electron is wrapped around
the boundary and the number of electrons it commutes
through is odd, i.e., the excitation number in certain spin
is even. Translate these hopping into integer pattern

" hopping ! �t(|11i+ |14i)⌦ |10i
# hopping ! �t |13i ⌦ (|6i+ |12i+ |9i � |3i)

Uterm ! U |13i ⌦ |10i (14)

III. USING TRANSLATION SYMMETRY

Running time of matrix diagonalization is generally
scaled as ⇠ M3, in which M is the dimension of the ma-
trix. Because of the dependence, it is crucial to further
reduce the space dimension with extra symmetry, even
with the cost of more complicate coding e↵ort.

A. eigenstate

Unlike total spin, our previous basis is not eigenstate
of translational operator T , therefore we introduce the
projector

Pk =
1

L

L�1X

j=0

e2⇡ijk/LT j (15)

in which k = 0, 1, ...L�1 For a given state |ni , the state
Pk |ni is an eigenstate of T

TPk |ni =
1

L

L�1X

j=0

e2⇡ijk/LT j+1 |ni = e2⇡ijk/LPk |ni

(16)

The normalization of the state Pk |ni requires a lot of
care. We find

P †
k =

1

L

L�1X

j=0

e�2⇡ijk/LT�j =
1

L

L�1X

l=0

e2⇡ilk/LT l = Pk

P 2
k =

1

L

L�1X

m,j=0

e�2⇡i(m�j)k/LTm�j

=
1

L

L�1X

l=0

e2⇡ilk/LT l = Pk (17)

Hence, hn|P †
kPk |ni = hn|Pk |ni

There is a tricky point in the translation operator, in
some cases, we need to attach a phase because of peri-
odic boundary condition and anticommutation relation
of Fermion, for example

T |1100i" = Tc†3"c
†
2" |0i

= c†0"c
†
3" |0i = �c†3"c

†
0" |0i = � |1001i"(18)

B. example

Let us consider the " pattern from I: All the 4 states
are connected with a translation by one site.

|0i = T 0 |0i = 0111

|1i = T�1 |0i = 1011

|2i = T�2 |0i = 1101

|3i = T�3 |0i = 1110 (19)

Applying the projector to the representative of the cycle,
Pk |0i, we can generate L linearly independent states,
which in our case reads

P0 |0i = (0111 + 1011 + 1101 + 1110)/L

P1 |0i = (0111� i1011� 1101 + i1110)/L

P2 |0i = (0111� 1011 + 1101� 1110)/L

P3 |0i = (0111 + i1011� 1101� i1110)/L (20)

The advantage of these new states, which are linear com-
binations of all members of the cycle in a spirit similar
to discrete Fourier transformation, becomes clear when
we apply the Hamiltonian: Whereas the Hamiltonian
mixes the states in (19), all matrix elements between the
states in (20) vanish. Hence, we have decomposed the
four-dimensional Hilbert space into four one-dimensional
blocks.
In the next step, we repeat this procedure for the # pat-
terns of I. There is two permutation group, S2 and S4,
in # while only one permutation group, S4, in ".

|3i , |6i , |12i , |9i 2 S4

|5i , |10i 2 S2 (21)
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To get the complete symmetrized basis, we need to
combine the up and down spin representatives, thereby
taking into account relative shifts between the states. For
our sample case the combined representatives, in each
blocks,

Pk(0111 ⌦ 0011)

Pk(0111 ⌦ 0110)

Pk(0111 ⌦ 1100)

Pk(0111 ⌦ 1001)

Pk(0111 ⌦ 0101)

Pk(0111 ⌦ 1010) (22)

in general, we need to combine all the permutation groups
one by one from two spins and translate # spin by ⌫
times, ⌫ is minimum number between group ranks of two
combined permutation,

|ri = |n"iT j |m#i (23)

with j = 0, 1...⌫, as in (22). The basis of each of the L
fixed k Hilbert spaces is given by the states

|rki =
Pk |rip
hr|Pk |ri

(24)

then the matrix elements between two states |rki and
|r0ki is simply given by

hr0k|H |rki =
hr0|PkHPk |rip

hr0|Pk |r0i hr|Pk |ri

=
hr0|PkH |rip

hr0|Pk |r0i hr|Pk |ri
(25)

Repeating the procedure for all representatives, we ob-
tain the matrix for a given k, Th =e full matrix with fixed
particle numbers N" and N# is decomposed into L block-
ees with fixed k. the 24⇥24 matrix from I is decomposed
into the four 6⇥ 6 matrices.

C. A few Remarks

In III B, we encounter an easy case, 4(")⇥6(#) ! 24 !
4(k) ⇥ 6 . Let us see some more complicated case. For
L = 4 , N" = 2 and N# = 2, within each blocks we have
S4 ⌦ S4 + S4 ⌦ S2 + S2 ⌦ S4 + S2 ⌦ S2 = 10, as well as 4
states with

hr|H |ri = 0 (26)

in which |ri is

P1(0101 ⌦ 0101)

P1(0101 ⌦ 1010)

P3(0101 ⌦ 0101)

P3(0101 ⌦ 1010) (27)

Certainly, we need to discard the non-normalizable

state, hence we find 10 + 8 + 10 + 8 = 36 =

✓
4
2

◆✓
4
2

◆

More di�culty appears when L is larger, when L = 6,
N" = 2 and N# = 3, S3⌦S2 is supposed to have 6 states,

001001 2 S3

010010 2 S3

100100 2 S3

010101 2 S2

101010 2 S2 (28)

while 12 projected states

Pk(001001⌦ 010101)

Pk(001001⌦ 101010) (29)

have non-zero normalization. So far we have no idea how
to eliminate the redundant states, hence in the implemen-
tation, we switch o↵ the translational symmetry function
when the dimension doesn’t match up.

IV. EXACT DIAGONALIZATION

In this section, we will discuss the details of solving
eigenvalues of the block matrix via the Lanczos algorithm
and QR reduction algorithm. The Lanczos algorithm will
reduce the original matrix to a tridiagonal matrix with
dimension equals to the number of iterations. Then, the
eigenvalues can be obtained with QR algorithm on the
tridiagonal matrix.

A. The basic Lanczos algorithm

We first introduce the basic Lanczos algorithm which
converges quickly after several dozens of iterations.
Starting with a n⇥n matrix A of interest and a random
unit vector v1, the recurrence of the Lanczos vectors are
such that

�j+1vj+1 = Avj � ↵jvj � �jvj�1, (30)

where ↵j = v⇤jAvj , �j+1 = v⇤j+1Avj , and �1 = 0. The re-
currence generates an orthonormal set of Lanczos vectors
and a tridiagonal matrix defined as

Tm =

0

BBBBBB@

↵1 �2

�2 ↵2 �3

�3 ↵3
. . .

. . .
. . . �m

�m ↵m

1

CCCCCCA
. (31)

This method is powerful when m steps are carried with
m ⌧ n. Then the following relation holds,

AVm � VmTm = �m+1vm+1e
⇤
m, (32)
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FIG. 1: Ground-state eigenvalues for L = 8 with di↵erent
numbers of spins.

where Vm = [v1, v2, · · · , vm] and em is the unit vector of
m dimension. Once the tridiagonal matrix is obtained,
the eigenvalues can be calculated with QR reduction al-
gorithm. Practically, this method is handled by the GSL
library we used. Therefore, we focus on how to obtain
the tridiagonal matrix with Lanczos algorithm.
With the above algorithm, we study the ground-state

eigenvalues of the largest four dimensions with the lattice
size L = 8. We observe from Fig. 1 that for the eigenval-
ues converge quickly within 30 iterations for dimensions
larger than 3000. This quick convergence makes the al-
gorithm powerful. For higher lattice size, the eigenvalues
will converge within one hundred iterations [1]. How-
ever, as the lattice size increases, much greater computer
memory will be required to initialize the original matrix
A. Therefore, our study provides a proof-of-principle ex-
ample of the exact diagonalization method.

B. The projection Lanczos algorithm

We discussed the basic Lanczos algorithm which shows
quick convergence on the ground-state eigenvalues. With
a careful examination on the next several eigenvalues of
a system with given spin numbers, we find that high
degeneracy in these eigenvalues as the number of iter-
ations increases. As shown in Fig. 2, we study the first
five eigenvalues of the model with L = 8, N" = 4 and
N# = 3 using the basic Lanczos algorithm. With about
50 iterations, it seems that the eigenvalues have reached
their respective steady values. However, as the iterations
increase, the initial non-degenerate eigenvalues become
degenerate. This is due to the loss of orthogonality of
Lanczos vectors in as the number of iterations increases.
Since we implemented in finite precision arithmetic, the
Lanczos algorithm does not guarantee the orthogonality
of the vectors. To clear the artificial degeneracy of the
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FIG. 2: Five-fold artificial degeneracy of L = 8, N" = 4, and
N# = 3 using the basic Lanczos algorithm.
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FIG. 3: Two-fold ground-state degeneracy of L = 8, N" = 4,
and N# = 3 using the projection Lanczos algorithm.

basic Lanczos algorithm, we apply the projection Lanc-
zos algorithm which orthogonalizes the vector vj+1 with
respect to all previous vectors v1 to vj . This method
takes larger computer memory to store the vectors than
the previous method, where vj+1 is orthogonal to vj by
construction.
We plot again the first five eigenvalues of the same

system by using the projection Lanczos algorithm in Fig.
3. It is shown that with enough iterations the first five
eigenvalues split into three di↵erent ones. The five-fold
artificial degeneracy is reduced to two-fold. We compare
the results of the projection Lanczos algorithm with the
analytical values.
Then we use QR reduction algorithm, packaged in

GSL library, to calculate the ground state respec-
tively. We find two-fold ground-state degeneracy, Eg =
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�8.2861179292, which matches up with the projection
Lanczos algorithm.

V. SUMMARY AND CONCLUSIONS

In this paper, we studied numerical algorithms on ex-
act diagonalization of one-dimensional Hubbard model.
We reduced the system of L = 8 lattice size with con-
servation and symmetries. Two variations of Lanczos
algorithms are applied on the reduced matrix to obtain
the convergence of the algorithms and correct spurious

results. The basic Lanczos algorithm is fast to converge
but the vectors lose their orthogonality as enough itera-
tions are carried out. The projection algorithm is more
consuming on the computer memory but provides with
more reliable excited eigenvalues.
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We study the optimization problem of the traveling salesman using simulated annealing. We test
the linear, logarithmic, and exponential annealing schedules along with di↵erent initial conditions to
observe how the speed of the cool down along with the starting parameters a↵ect the performance
of the algorithm. The number of samples and number of Monte Carlo sweeps are varied to examine
the influence these factors have on the program. We run each schedule on the 50 city tour numerous
times to find the most e�cient algorithm, or the approach that gives the optimal length the most
often. We also test these di↵erent schedules with tours with larger numbers of cities to show that
the success probability of the algorithm diminishes as city size increases.

I. INTRODUCTION

The Traveling Salesman Problem is a widespread prob-
lem in computer science and optimization problems. The
problem was defined in the 1800s by the mathematicians
W. R. Hamilton and Thomas Kirkman [1]. It is a NP-
hard problem where a traveling salesman needs to visit
each of N cities only once and return to his original city,
and he wants to find the order of cities to visit with the
shortest distance. The traveling salesman problem has
applications in transportation routing, scheduling, pack-
ing, production management, and placement of wires on
integrated circuits. It also has applications as a sub-
problem in DNA sequencing finding similarity between
DNA fragments [2, 3].

II. MODEL

Simulated annealing, named for its resemblance to the
thermodynamics annealing process of heating a metal
and slowly cooling it for particles to reach their mini-
mum energy state, was the optimization method used to
solve this problem. The program begins with initial con-
ditions, and it is slightly perturbed with each iteration.
If the resulting solution is improved it will replace the
previous solution. The downside to using simulated an-
nealing is the algorithm is easily trapped in a metastable
state with energy corresponding to a local minimum and
once trapped won’t reach the true minimum. This prob-
lem is corrected by using a temperature factor. For every
move that results in a better solution, the move will be
accepted. For every move that results in a worse solution,
the move will be accepted with a probability dependent
on temperature. In this manner, the solution can jump
out of low minima at high temperatures to reach the true
minimum. At low temperatures, the probability of mov-
ing to a worse solution decreases and it is more likely to
be stuck in minima so it is best to start at a high tempera-
ture and slowly cool. In the specific example of simulated
annealing applied to the traveling salesman problem, the
cost function to be minimized is the length of the tour
of cities. The program begins with an arbitrary initial

path between the cities and a given initial temperature.
At each temperature a number of Monte Carlo updates
are run. At each update the length is calculated as the
sum of all the distances between cities. In this case it
is assumed that each city is connected to another by its
Euclidean distance. A move is proposed by randomly se-
lecting two cities to be swapped in the tour. The energy
of this move is computed as the di↵erence of the length
of the existing tour from the length of the proposed new
tour. If the energy is negative, or the length of the new
tour is shorter than the previous tour, then the move is
accepted. If the energy is positive, or the new tour is
longer than the previous, the move is accepted with a
probability of

p = exp(��E

T

) (1)

After all the updates are finished, the system continues
to the next temperature where more Monte Carlo up-
dates are run, and the program persists until the tem-
perature has decreased to 0. The physical analogy of
simulated annealing is a material is heated and cooled
into a solid state again. Slow cooling leads to less defects
and lower energy while faster cooling yields a higher en-
ergy. If it cools too quickly and does not spend enough
time near the freezing point the process may be stuck
in non-equilibrium states. This is also true for our sim-
ulated annealing program. In the physical analogy, the
material can be viewed as a system of particles, and our
results can be interpreted like the statistical mechanics
at a given temperature. These particles will change en-
ergy with temperature the probability of an increase in
energy is

p = exp(��E

kT

) (2)

where k is the Boltzmann constant. In this physical anal-
ogy the distribution of states is given by the Boltzmann
distribution

Nj

N

= exp(��E

T

) (3)

By using the Metropolis algorithm for acceptance of
worse moves, the program finds thermal equilibrium at
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each temperature, or sample. Because we are using this
criterion for accepting a move, our final distribution of
states (in this case it will be tour lengths) will be a Boltz-
mann distribution. [4] A system with temperature re-
duced infinitely slowly will converge to the true mini-
mum. This however is not practical, and there are three
typical cooling schedules where temperature is decreased
linearly, logarithmically, and exponentially. The type of
cooling schedule as well as the initial conditions imposed
will determine the di↵erent temperatures the system will
be evaluated at as well as the amount of di↵erent temper-
atures. The number of Monte Carlo updates, or sweeps,
is also a factor in the e�cacy of the program. For exam-
ple, e�cient results could be found with a lower initial
temperature (meaning smaller amount of di↵erent tem-
peratures) if more Monte Carlo updates were run per
temperature. It is very important to do many updates
at lower temperatures because low temperatures do not
do well getting out of local minima so the number of
sweeps should increase as the temperature decreases.

III. METHODS

A. Linear Schedule

The linear schedule decreases temperature with

T (t) = Tinitial � bt (4)

where Tinitial is the initial temperature, b determines the
speed of cooling, and t is the time step of the cooling pro-
cess. Our method specifically used an initial temperature
of 20 with b = 0.1 and therefore 200 iterations to cool to
T = 0. The number of Monte Carlo sweeps increased
linearly with the temperature decrease. The number of
updates was given by

sweeps = 10000 ⇤ t (5)

Therefore the number of samples was 200 with 10000
sweeps in the first sample and linearly increasing from
there.

B. Logarithmic Schedule

The logarithmic schedule decreases temperature by

T (t) =
Tinitial

b+ log(t)
(6)

where Tinitial is the initial temperature, and t is the time
step of the cooling process. This is a slower cooling pro-
cess so the number of sweeps was given by

sweeps = 5000 ⇤ t (7)

With a greater number of samples, less sweeps were
needed per sample. For our logarithic schedule we used
b = 1, Tinitial = 50, and 635 samples.

TABLE I: For each cooling schedule run on the 50 city tour,
the number of samples and amount of sweeps per sample var-
ied while each program ran the same number of total sweeps.

CoolingSchedule NumberofSamples NumberofSweeps
Linear 200 10000 ⇤ t
Logarithm 635 1000 ⇤ t
ExponentialOne 20 75075 ⇤ t2
ExponentialTwo 45 200000 ⇤ t
ExponentialThress 21 1000000 ⇤ t

C. Exponential Schedule

The exponential schedule decreases temperature by

T (t) = Tinitial ⇤ exp(�bt) (8)

where Tintial is the initial temperature, b determines the
speed of cooling, and t is the time step in the cooling
process. It was trickier to find the initial conditions of
the exponential schedule that would lead to successful
results than the other schedules. Three di↵erent expo-
nential schedules were tried with varying rates of success.
For exponenial set one, Tinitial = 80 and b = 0.8. The
number of of sweeps per sample was given by

sweeps = 75750 ⇤ t2 (9)

The number of sweeps was greatly increased because only
20 samples were ran. For exponential set two, Tinitial =
120 and b = 0.8. The number of sweeps for each of the
45 samples was given by

sweeps = 200000 ⇤ t (10)

For exponential set three Tinitial = 120 and b = 0.95.
The number of sweeps for each of the 21 samples was
given by

sweeps = 1000000 ⇤ t (11)

To ensure the comparison across all cooling schedules
systematic, each schedule ran through the same total
number of sweeps througout the program. However, the
number of samples and increase in sweeps per sample
varied greatly as seen in Table 1.

IV. RESULTS

Starting with a 50 city random initial tour with length
of 5450 steps, we computed the optimum tour length to
be 1147.3151. This optimized tour is shown in Fig. 1.
Each cooling schedule was run hundreds of times so that
success rates of the programs could be calculated. One
determination of the success of the program is the per-
cent of runs the program yielded the exact minimum. A
second measure of the success is the percent of runs the
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FIG. 1: This is the optimized tour of the 50 cities.

program yielded a tour that had a length within 5% of
the exact minimum. The two measures of success for
each of the linear, logarithmic, and exponential sched-
ules are given in Table 1. The histograms of each cooling
schedules (Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6 )
show the distribution of tour lengths over several runs
of the same program. The logarithmic annealing sched-
ule was the schedule that found the true minimum the
most. The exponential schedules used were not very suc-
cessful at finding the minimum length of the tour com-
pared to the linear and logarithmic schedules. In the
histograms, one can see the metastable states or local
minima that the program gets stuck inside. For exam-
ple, the program sometimes returned the optimal length
to be 1147.93 or 1447.99. The logarithmic program is
more likely return the true minimum and not get stuck
in a metastable state. This follows from and supports the
work done by Geman and Geman in 1984 that showed
the logarithimic cooling schedule works best. The loga-
rithmic cooling schedule allows for several samples in the
higher temperatures while still spending plenty of time
at the temperatures close to freezing point [5]. The run
time is 3 minutes and 13 seconds for the linear schedule,
3 minutes and 13 seconds for the logarithmic, 2 minutes
and 56 seconds for exponential one, 3 minutes and 7 sec-
onds for exponential two, and 3 minutes and 19 seconds
for exponential three.
The minimum length converges to the optimal solution

as the temperature decreases throughout the program.
Fig. 7 shows the di↵erent lengths the program yieled at
each step in the cooling process in the 50 city tour. Each
schedule was run multiple times, and the run that led to
the best solution was chosen. The logarithmic schedule
has the greater number of samples with less sweeps per
sample. Because it starts a much higher temperature
the first few minimum lengths returned are very inac-
curate, but it converges to the global minimum as the
temperature continues to decrease. The linear and the

TABLE II: For each cooling schedule run on the 50 city tour,
we calculated the percent of runs that the program found the
true minimum, and the percent of runs that found the tour
length to be within 5% of the true minimum, or less than
1204.686.

CoolingSchedule %ofRunsExact %ofRuns < 1204.686
Linear 78.935 100
Logarithm 97.540 100
ExponentialOne 0.804 61.260
ExponentialTwo 0.810 55.466
ExponentialThree 4.551 80.494

1150 1155 1160 1165 1170
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FIG. 2: Histogram of tour lengths of the 50 city tour found
using the linear cooling schedule.

exponential schedules both seem to converge at around
the same temperature, but the exponential schedule ends
in a local minimum not the exact optimum.
In looking at the di↵erent cooling schedules one can

see the strong e↵ect initial conditions can have on the
performance of simulated annealing. Higher initial tem-
perature gives random starting points, but more samples
to converge to the minimum. The best performance came
from exponential set three with a high initial tempera-
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FIG. 3: Histogram of tour lengths of the 50 city tour found
using the logarithmic cooling schedule.
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FIG. 4: Histogram of tour lengths of the 50 city tour found
using the exponential one cooling schedule.
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FIG. 5: Histogram of tour lengths of the 50 city tour found
using the exponential two cooling schedule.

ture, smaller number of samples, and higher number of
sweeps per sample (Table II). In looking at the conver-
gence of the minimum length as a function of temperature
we see that the three exponential schedules all fell into
di↵erent metastable states along the way and ended in
di↵erent metastable states with no schedule finding the
true minimum tour (Fig. 6).
All the previous runs were using the 50 city tour. As

the number of cities on the tour to be otimized increases,
the program is less successful and the probability of the
algorithm returning the optimum tour diminshes to zero.
Using the logarithmic schedule on a 75 city tour, the op-
timal tour length is still reached numerous times, but
not nearly at the rate the 50 city tour was reaching (Fig.
7). As the tour length is increased to 400 cities, the al-
gorithm certainly still optimizes the solution by taking
the original tour length of about 40,000 steps to around
4900 steps. The number of runs that reaches the lowest
tour length is very small compared to the other lengths
found though, and the shortest tour found by this pro-
gram is still not necessarily the optimal tour. In Fig. 8
the Boltzmann distribution of the density of states (tour
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FIG. 6: Histogram of tour lengths of the 50 city tour found
using the exponential three cooling schedule.
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FIG. 7: This is the graph of the convergences of the minimum
tour length as a function of the temperature comparing linear,
logarithmic, and exponential cooling schedules.

lengths) is clearly viewed. This is due to the fact that
the probability of a move out of a metastable state is
given by the Boltzmann factor. The larger the number
of cities, the more likely the algorithm will be stuck in
one of these metastable states so the Boltzmann distri-
bution is more visible, seen especially well in the 75 city
tour distribution.

V. SUMMARY AND CONCLUSIONS

Simulated annealing proves a suitable method to de-
termine the shortest path between a set of cities for a
reasonable number of cities. We found that the logarith-
mic schedule was the most optimal code for the 50 city
tour, with the greatest percentage of runs finding the ex-
act minimum. For finding the global minimum (absolute
shortest route) the logarithmic and linear schedules both
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FIG. 8: Histogram of tour lengths of the 75 city tour found
using the logarithmic cooling schedule.
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FIG. 9: Histogram of tour lengths of the 400 city tour found
using the logarithmic cooling schedule.

worked reasonably well. For finding a minimized route,
but not the exact shortest, the logarithmic and linear
schedules both worked extremely well for 50 cities. In
the tuning of the exponential schedules we found that
greater sweeps with fewer samples, as in exponential
scheudle three, gave better results. As the number of
cities grows, the probability the program will find the
optimal path decreases to zero. The calculations found
here could be improved with slower annealing schedules
and more sweeps per sample. A global minimum could
be found by running a shorter program, one with less
sweeps and samples, many times over and comparing the
resulting optimized tours to find the shortest. This could
be counterbalanced by running less tours that are more
successful but take more running time. A balance be-
tween these two methods could be explored to find the
fastest method to find the absolute minimized tour for a
reasonable number of cities.
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We study the possibility and legitimacy of self-organized criticality being conveyed in a par-
ticular class of computational models. Self-organized criticality is a commonly occurring natural
phenomenon that has drawn much research interest. Following research of past decades to com-
putationally model and display self-organized criticality to understand this complexity commonly
found in nature, di↵erent models have been proposed and tested. While the goal is to find a model
that does not require tuning, many early models failed to produce such results. This work focuses
on demonstrating whether or not the random-field Ising model will possibly fit the criteria of such a
system. Nearly all research using random-field Ising Models involved tuning the standard deviation
of the random field in order to display the power law which is expected to occur if a system displays
self-organized criticality. Using relatively small system sizes we were able to present evidence that
the random-field Ising Model does fail to produce the desired characteristics of a system that dis-
plays self-organized criticality. Using major trends and comparing them to earlier research we have
shown that the R value does require tuning in order to display the power law for its distribution.
Even though an exact value for the standard deviation of the critical point where the power law is
displayed could not be verified due to finite-size e↵ects, the results of previous work are confirmed
by extrapolation through studying size dependence. Altogether we were able to increase the legiti-
macy of previous research to give further proof to the fact that the random-field Ising Model is an
inadequate system to display self-organized criticality

I. INTRODUCTION

Self-organized criticality (SOC) is the tendency of large
dispersed systems to drive themselves into critical states
without any required or special parameter tuning [1].
Fractal systems that display SOC are numerous in na-
ture [2] and include but are not limited to earthquakes,
the structure of dried-out river beds, the meandering of
sea coasts, and the structure of galactic clusters.
With such a commonly occurring phenomenon, under-

standing the origin of SOC has become a major point of
research in order to get to the root of the mystery of these
and other natural processes. The di�culty of modeling
such systems comes from the fact that in most compua-
tional equilibrium systems critical behavior is only found
at a critical value of at least parameter. This di�culty
has led to decades of pioneering work in studying com-
putational models that can be tuned to display SOC.
Beginning with dynamical systems including the sand-

pile [3] and forest-fire models [4], the hunt for a compu-
tational model that fits the description of a system that
displays SOC has been happening since the 1980’s. The
sand pile model, one of the first examples found to dis-
play SOC, essentially says that if you piled sand grains
randomly, one at a time, they would eventually form a
pile that reached a critical slope. Once this critical slope
is achieved an avalanche would occur. It has been shown
that without tuning, these phenomenon occur according
to the power law, or scale invariant behavior. That is,
the distribution of the avalanche sizes is not limited to a
characteristic size. The basic idea of the sandpile model
can be seen in Figure 1.
Models of such examples were major first steps in

developing questions that could later be answered.

Whether the model was a feature of high-dimensional
models, models with a diverging number of neighbors,
long-range interactions, or is it simply a property of a
large class of models all had to be answered. The work
of this paper is to rea�rm some of the work related to
the earliest model, the random-field Ising Model. Most
of the early work done in the earliest finite-dimensional
models has been shown to be inadequate when it comes
to displaying SOC. Many required tuning of at least one
parameter, an obvious flaw to displaying SOC. In early
research with random field Ising models it was found that
larger systems are crucial to extracting accurate values
of the universal critical exponents and understanding im-
portant qualitative features of physics [5]. Due to limita-
tions in code and time this work only studies the 3D Ising
Model at zero temperature with dimension length up to
50 spins. Previous initial work done using the random-
field Ising Model has shown that despite the attempt to
use a random field to mimic some of nature’s random
characteristics and gaussian behavior the system did not
display SOC. As the distribution of the standard devia-
tion of the random field varied so did the distribution of
the avalanche sizes. Once tuned to a specific value R will
cause the model to have a sclae invariant distribution of
avalanches. This work tests the validity of this claim in
order to see if the random-field Ising Model might still
possibly serve as a system that displays SOC. This is
done by providing an algorithm that flips a single neigh-
boring spin once a first spin flips. This continues until
the avalanche ends or all spins have been flipped.
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FIG. 1: Although it is a very simple example, the sandpile
model is one of numerous examples of self-organized criticality
found in nature. As sand is piled up randomly, certain points
will eventually reach a critical slope that will then cause an
avalanche. The distribution of the avalanche sizes is nearly
always scale invariant. This mean that a avalanche of any
size may occur. Sand on the sea shore, earthquakes, and
galactic clusters all display this unique phenomenon. Such a
unique phenomenon has led to a hunt for a mathematical and
computational model that displays this behavior in order that
the SOC character of nature can be better understood.

II. MODEL AND ALGORITHM

The Hamiltonian of the zero temperature random-field
Ising Model in an external field is given by the equation

H({si}) = �
X

ij

Jijsi sj �
X

i

(fisi +Hsi) (1)

where the Ising spins si 2 {±1} lie on the vertices of a
scale-free graph with N or L3 sites. For our purposes
this model simply adds the ingredient of disorder to the
idealized physics picture. Throughout our algorithm the
external field H is changed. This change over time causes
an individual spin to flip when the local field changes
sign. When flipped, the local field of all neighbor spins
change. Because of the field change, these neighbors now
have the possibility to flip. For our purposes, only the
”most extreme” spin is flipped. The process continues,
forming an avalanche, until all neighbors are either pre-
viously flipped or inelligible. The local field of a spin is

given by the equation

Fi =
X

j

Jijsj + fi +H. (2)

In a d dimensional system of d > 1, the number of neigh-
bors is dx2. The probability of a neighbor flipping for
a given random field distribution is directly dependent
on the number of neighbors and their spins. [5] Due
to issues with our code, a dimension length of 50 spins
was our maximum. While still not large enough to avoid
finite-size e↵ects it was still enough to uncover the basic
trends that were needed to compare to previous work. In
order to get a system to perform such flips a recursive
function was used:

void FLIPSPIN(long int s_i, double spins[]...)
if(LocalField[s_i]<0){
spins[s_i]=-1;
(*avalanchesize)++;
(*totalflips)++;
for(i=0; i<6; i++){
for(q=0;q<6; q++){

LocalF[nb[i][s_i]]=0;
LocalF[nb[i][s_i]]+=spins[ ];

}
LocalF[nb[i][s_i]]+=(Rand[ ]+H);

if(small==-1 && spins[nb[i][s_i]]>0
&& LocalField[nb[i][s_i]]<0){

small=nb[i][s_i];
//’small’ can be understood as
the ’most extreme’ neighbor spin.

}
if(spins[nb[i][s_i]]<0)

continue;
if(spins[nb[i][s_i]]==1 &&

LocalF[nb[i][s_i]]<LocalF[small]){
small=nb[i][s_i];

}
}
LocalF[small]<0 && spins[small]==1){

//If the most extreme neighbor spin
is positive, that spin is flipped.

FLIPSPIN(small, spins,....);
}
return;

//Once the final recursion ends or no neighbor
has a potential spin flip, the function returns.

}
return;

This recursive C function flips a qualifying spin and an-
alyzes its neighbors. H, the uniform field, is reduced
(based on our initial conditions) until a spin flip occurs.
Once it does, the above function is called. It causes con-
secutive spin flips until there are no more qualifying spins.
Once the avalanche ends, H is reduced again until an-
other avalanche occurs. The reduction of H ends when
all spins flips are negative one.
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The major focus of the iterations is to see the distribu-
tion of avalanche sizes as a percentage of avalanches that
occur. The calculations for percentage and avalanche
sizes were summed over numerous iterations and since
they were calculated exactly error bars are not relevant
to this study. When the distribution of avalanches are
plotted using a log scale, a straight line is expected for
a relationship that follows the power-law. The presense
of the power law will display scale invariance. In other
words, SOC will be displayed. Each of our iterations were
run with a new gaussian distributed random field. The
random field strength was given by choosing two random
numbers x and y where

s = x2 + y2 < 1 (3)

and the values of the random numbers fall between -1
and 1. The normal random variable n is produced using
the Marsaglia polar method given by the equation

n = x

r
�2 ln s

s
(4)

.

III. DATA COLLECTION AND OBSERVATIONS

Through the algorithim described above, multiple runs
were made with various values for standard deviation
sizes (R) of the random field. The random field is gen-
erated with a gaussian distribution with a mean value of
zero. This section is organized in order of the progress
made through the study and notes the major observa-
tions of each stage.
Once the code was completed and compiled an initial

test was run. A dimension size of 20 spins and R = 1,
or the standard normal distribution, was used initally in
order to test the output of the program. The goal of this
output was to test the concept of displaying the distribu-
tion of avalanche sizes. Figure 2 displays proof of concept
that large numbers of avalanches can be recorded and the
distribution of them displayed. It also served as an ini-
tial step for further data analysis. As seen from Figure 2
and previous research [6] it can be estimated that a value
near R = 1 is appropriate.
Next came the need to study clear observables of

avalanche distributions for various R values. It was dur-
ing this process that due to certain limitations the maxi-
mum spin dimension size available would be 50 spins, al-
lowing for a maximum of 125,000 spins in the 3D model.
Because of this, finite sizing e↵ects made it di�cult to
get a distinctly measureable critical R (RC). The deci-
sion was made to try to observe trends that are expected
from previous research[3] [6] in order to test their results.
Three major trends can be noted. When RC is reached
a scale invariant distribution of the avalanche sizes will
be displayed in a straight line on our log plot. If the
R value is too high compared to RC , there tends to be
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FIG. 2: Here a simulation of the random field ising model
with a random field of the standard normal distribution. The
dimension spin size was 20 spins or 8000 spins in the system.
This curve shows a proof of concept that avalanche distribu-
tions of a random-field Ising Model can be clearly displayed,
as conceptually conveyed by similar research[3].This was a
crucial first step in our study’s development.

fewer large avalanches causing the plot to become much
steeper. In the case where the R value is too low, the
plot may appear more linear initially, but there is a noti-
cable increase in the number of smaller avalanches. This
causes a noticable ’bump’ in the plotted line. Figure 3
captures each of these three trends.
With the observations of the three major trends in-

volved in locating RC , it seem as if the random-field
Ising Model has the capability to display a scale invariant
avalanche distribution given the right amount of tuning
and freedom from finite size e↵ects but it clearly does
not display SOC. As further proof that this model does
not display SOC, the program was run many more times
(from 540 iterations to 6000). Figure 4 shows the increase
in precision that comes from increasing the number of it-
erations. As a final e↵ort to get an extreme trend in
avalanche distribution and prove that scale invariance is
not displayed a simulation with R = 0.5 was ran. The re-
sult is a very interesting distribution as seen in Figure 5.
The random-field Ising Model is a very good first model
in tuning for a scale invariant avalanche distribution but
it is far from perfect for displaying SOC. There are ob-
vious limitations in the model itself and this has led to
investigating other models in the past few decades.
In order to a�rm or deny the conclusion reached in

previous research that R = 2.25 is the critical we had
to extrapolate based on size dependence. Due to code
limitations our random-field Ising Model was unable to
exceed L = 50. Previous research was able to clearly
display RC with the dimension length L = 320. We
were unable to deny these claims but by our study RC

will most-likely occur at 2.25. We are able to say this
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FIG. 3: Displayed are three simulations of the random field
Ising model with R = 1 (green), R = 2.25 (red), and R = 6.0
(blue). The dimension spin size was 50, leading to 125000
spins. The simulation was run using 540 iterations in this
trial. It is clearly seen that larger system sizes resulted in
more distinct distribution lines compared to Figure 1. All
three characteristics of an avalanche distribution could be
noted here when near the RC value. First, there is a clear
linear trend around RC . With R = 6.0, the amount of large
avalanche sizes decreases due to the fact that the field given by
the neighbors has less e↵ect. Initially, R = 1.0 seems to be the
most linear, but a clear bump can be seen in the avalanches
between avalanche sizes of 3 and 50. The large avalanche size
linear appearance is misleading due to the early bump. In
fact, a small bump is noticeable in the R = 6 line in the 50
to 105 avalanche size range. This figure directly correlates to
the results displayed in previous work[6]. R = 2.25, the RC

found in previous research, does not seem linear either, but
due to finite sizing e↵ects it cannot be ruled out according to
this trial.

by extrapolating based o↵ of size dependence. Figure 6
shows the trend of the avalanche distribution following
the power law as L increases. If this trend were to con-
tinue to infinity it is safe to say that the power law would
be displayed.

IV. SUMMARY AND CONCLUSIONS

Self-organized criticality is a characteristic of many
systems found in nature. Such a commonly occurring
natural phenomenon has drawn the immediate interest
of computational physicists around the globe to study
them in order to gain an understanding of nature’s meth-
ods. Much of the earliest work in this field of research
invovled finite-dimensional models such as the random-
filed Ising Model. Models similar to this one were tested
in order to see if they required special tuning of the stan-
dard deviation of the random field’s distribution. In our

research we have shown that the system fell short of dis-
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FIG. 4: The results here are from the same program of Fig-
ure 2 but with many more iterations (6000 compared to 540).
The large increase of iterations led to a more defined distribu-
tion and allowed for more intense analysis. The three major
features noted previously (see Figure 3 description) are even
more defined in this case. A line was inserted into the graph
to show the very linear trend of the R = 2.25 line, the bumps
of the two extreme R values, and the exponential curves of
each distribution.

playing scale invariance for every R. Instead, R had to be
tuned which disqualifies the random-field Ising Model as
a system that displays SOC. Using major trends found
in early research as the R value is tuned to result in
a scale invariant avalanche distribution we have shown
that the results of this work are remarkably similar to
that of previous early research. Although a linear plot
on a log scale graph could not be found due to finite-
sizing e↵ects, the major trends expected to be found in
the random-field Ising Model were shown to occur which
allows us to extrapolate that R = 2.25 would very likely
display the power law if the dimension size was increased,
but limitations in programming prevented us from test-
ing our model in more detail. Finally, extreme values
for R displayed avalanche distributions that definitively
proved this system required tuning. This work further
adds to the legitimacy of early research. The random-
field Ising model does not display SOC and we recognize
the continued need for a better system to help scientists
understand how and why SOC is so prevalent in nature.
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same number of iterations. This figure shows the limitations
that occur with the random-field Ising Model and its clear lack
of SOC. R = 0.5 clearly does not display SOC. This system is
not su�cient to display SOC because it requires the precise
tuning of a single parameter. Because this model requires
precise tuning it is clearly a model that does not display SOC
and is in need of much improvement.
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From this we can conclude that as L goes to infinity the power
law would very likely be displayed for R = 2.25.
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In this work, I study the Sine-Gordon equation, which gives us several kinds of soliton solutions.

I propose an explicit scheme to solve the equation numerically with no-flux boundary conditions.

I present the time evolution profile for kink solitons, antikink solitons, kink-kink soliton collision

and kink-antikink soliton collision. In addition, I investigate the properties of the kink solitons,

demonstrating that their shape do not change over time. The collision between two solitons is

elastic and each of them keeps unchanged after collison.

I. INTRODUCTION

In physics, the behavior of the wave propagation is
determined by wave equation, which builds the relation
between the partial derivative of time and the partial
derivative of space. The wave equation yields the wave
dispersion relation, which relates the wavelength of a
wave to its frequency. From this relation, the phase veloc-
ity and group velocity of a wave packet have the following
expressions

v

p

=
!

k

, v

g

=
@!

@k

,

where v
p

is the phase velocity, v
g

is the group velocity, !
is the angular frequency and k is the angular wavenum-
ber. If the phase velocity does not equal the group ve-
locity, di↵erent frequencies will travel at di↵erent speed
and the shape of the wave packet will therefore change
over time, which indicates that the propagation of the
wave packet is dispersive. For example, the Schrodinger
equation for a free particle (with m and ~ set equal to
1),

i

@u

@t

= �1

2
r2

u,

yielding the dispersion relation,

! =
1

2
|k|2 .

So the group velocity of the wave packet is twice larger
than the phase velocity of the wave packet. Figure 1
demonstrates one typical picture of the dispersive wave
propagation. The wave packet is localized at the initial
time but eventually the wave packet di↵uses to an un-
limited region of space.

However, in physics, there is also the non-linear Kerr
e↵ect [1]: the velocity of the wave packet also depends
on its amplitude, not only its frequency. If the pulse has
just the right shape, the Kerr e↵ect will exactly cancel
the dispersion e↵ect, therefore, the shape of the pulse
will not change over time, and this is the definition of
a soliton. Solitons have many application in fiber optics
[2], biology [3], and magnets [4]. In mathematics, the

FIG. 1: Time evolution profile of the dispersive wave propa-

gation. The wave packet is localized at the initial time but

eventually the wave packet di↵uses to an unlimited region of

space.

Sine-Gordon equation,
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@x

2
+ sinu = 0. (1)

can give us several kinds of soliton solutions. My work
is to solve the equation numerically and investigate the
properties of solitons.

II. EXPLICIT METHOD

Consider the Sine-Gordon equation (1):
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on the interval x 2 [a, b] with initial conditions,

u(x, 0) = f(x),
@u

@t

(x, 0) = g(x). (2)

with no-flux boundary conditions,
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@u

@x

�����
x=b

= 0. (3)
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In the following, I propose a simple explicit scheme to
solve equation (1) to (3) [5]. The discretization scheme
reads
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Plugging in equation (1), one gets,
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with ↵ =�t/�x, i = 0, ...,M and j = 0, ..., T , where M

is the amount of space steps and T is the amount of time
steps.
To implement the second initial condition, one needs the
virtual point u�1

i

,
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Hence, one can rewrite the previous equation as,
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In addition, the following two expressions can be de-
duced by no-flux boundary conditions for two virtual
space points uj

�1 and u

j
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In conclusion, one can rewrite the di↵erential scheme to a
more general matrix form. In matrix notation the second
time row is given by

u1 = �t�1 +Au0 � �t

2

2
�1, (6)

where
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areM+1 dimensional vetors and A is a tridiagonal square
(M + 1)⇥ (M + 1) matrix of the form
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Other time rows, which can be derived by similar way,
can also be written in the matrix form as

uj+1 = �uj�1 +Buj ��t

2
�,

with j = 1, 2, · · · , T � 1
(7)

where

� = (sin(uj

0), sin(u
j

1), ..., sin(u
j

M�1), sin(u
j

M

))T

is a M + 1 dimensional vector and B is a square matrix,
defined by B = 2A.
Now let us apply the explicit scheme described above

to equation (1) to (3) and solve it on the interval [�L,L]
using the following parameters in Table 1.

TABLE I: Parameters used in the calculation

Amount of space steps M 400

Space interval L 20

Space discretization step �l 0.1

Amount of time steps T 1800

Final time tf 90

Time discretization step �t 0.05

Velocity of the soliton c 0.2

III. RESULTS

A. Kink Soliton

1. Profile

The initial conditions for kink soliton solution are the
following:

f(x) = 4 arctan

✓
exp

✓
x+ L/2p
1� c

2

◆◆
,

g(x) = �2
cp

1� c

2
sech

✓
x+ L/2p
1� c

2

◆
.

The basic profile of the kink soliton solution is shown in
Figure 2(a). The width of the kink soliton solution, � is
defined by following:

� = x2 � x1,

where x1 is the position when u equals the minimum of
u, u

min

+ 0.5, and x2 is the position when u equals the



3

FIG. 2: (a) The profile of the kink soliton, and x2 � x1 is the

width of the kink soliton. (b) The profile of the hump-shaped

soliton, obtained by the partial space derivative of the kink

soliton.

maximum of u, u
max

� 0.5. By using the linear approx-
imation, the definiton of the average slope of the kink
soliton, k is straightforward:

k =
u(x2)� u(x1)

�

.

As shown in the figure, the shape of the kink soliton
is similar to hyperbolic tangent function, which does
not look like a wave packet. The solitary wave solu-
tion, named hump-shaped soliton, can be obtained by
@u

@x

, whose shape is shown in Figure 2(b)

Next, I show the time evolution profile for both the
kink soliton in Figure 3(a) and the hump-shaped soliton
in Figure 3(b). The propagation of the kink soliton and
the hump-shaped soliton is stable and their shapes do
not change over time.

FIG. 3: (a) The time evolution profile for the kink soliton

solution and (b) the hump-shaped soliton.

2. Properties

In this section, I will investigate the properties of the
kink soliton solution, including the width, the average
slope and the calculation error compared with the exact
solution to demonstrate that the solution of Sine-Gordon
equation does not change over time with acceptable error,
which indicates that they are solitons.
First, I investigate how the width of a soliton evolves

with time. I calculate the width of the kink soliton at
arbitrary time and plot in Figure 4(a). The figure shows
that the width keeps constant over time with acceptable
calculation error. Then, I show the relation between the
average slope of the wave packet and time in Figure 4(b).
Expectedly, the average slope also keeps constant over
time with acceptable calculation error.
Finally, I study the relation between the calculation

error at final time t

f

and the space discretization step,
�l. The analytical solution of the kink soliton is given
by following[6]:

u(x, t) = 4 arctan

✓
exp

✓
x+ L/2� ctp

1� c

2

◆◆
. (8)

So the average error, E at final time t

f

can be obtained
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FIG. 4: (a) The width of the kink soliton versus time. (b) The

average slope of the kink soliton versus time. The width and

the slope keep constant over time with acceptable calculation

error.

by

E =

P
M

i=0

��
u(i, t

f

)� u

T

i

��
M

. (9)

Figure 5(a) demonstrates that the error increases non-
linearly with the space discretization step. In order to
make it clearer, I plot in log scale and fit these data
points with linear function. As shown in Figure 5(b),
these points fit the function f(x) = 2.02655x � 2.01953
extremely well, which indicates that the error increases
quadratically with the space discretization step and this
result is consistent with the expicit method. In additon,
I notice that the error is small enough, thus, acceptable.

FIG. 5: (a) Error at final time versus the space discretization

step and (b) in log scale. It is shown that the error increases

quadratically with the space discretization step, and the error

is small enough, thus, acceptable.

B. Antikink Soliton

The initial condition for antikink soliton solution are
the following:

f(x) = 4 arctan

✓
exp

✓
�x� L/2p

1� c

2

◆◆
,

g(x) = �2
cp

1� c

2
sech

✓
x� L/2p
1� c

2

◆
.

Then, I show the time evolution profile for both the an-
tikink soliton in Figure 6(a) and the hump-shaped an-
tisoliton in Figure 6(b). The propagation profile of the
antikink soliton is similar to the kink soliton, but the
propagation direction is opposite.
In conclusion, the kink soliton and antikink soliton so-

lutions and their corresponding solitary wave solutions
are the basic solutions of the Sine-Gordon equation.
Their shapes do not change over time, which is a special
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FIG. 6: (a) The time evolution profile for the antikink soliton

solution and (b) the hump-shaped antisoliton.

characteristic compared to other dispersive wave equa-
tion.

C. Kink-Kink Soliton Collision

In this section, I will investigate the collision between
two solitons. The first case is kink-kink soliton collision.
The initial conditions for the kink-kink soliton collison
solution are the following:

f(x) = 4 arctan

✓
exp

✓
x+ L/2p
1� c

2

◆◆

+ 4arctan

✓
exp

✓
x� L/2p
1� c

2

◆◆

g(x) = �2
cp

1� c

2
sech

✓
x+ L/2p
1� c

2

◆

+ 2
cp

1� c

2
sech

✓
x� L/2p
1� c

2

◆
.

Numerical kink-kink soliton collision solution and corre-
sponding solitary wave solution is presented in Figure 7
(a) and (b). As shown in the figure, kink solitons can
interact with other solitons, and the shape of each soli-
ton stays unchanged, which indicates that the collision is
elastic. This is another characteristic of solitons.

FIG. 7: (a) The time evolution profile for the kink-kink soli-

ton collision solution and (b) the corresponding solitary wave

solution. The shape of each soliton stays unchanged.

D. Kink-Antikink Soliton Collision

The initial conditions for the kink-antikink soliton col-
lision solution are the following:

f(x) = 4 arctan

✓
exp

✓
x+ L/2p
1� c

2

◆◆

+ 4arctan

✓
� exp

✓
x� L/2p
1� c

2

◆◆

g(x) = �2
cp

1� c

2
sech

✓
x+ L/2p
1� c

2

◆

� 2
cp

1� c

2
sech

✓
x� L/2p
1� c

2

◆
.

Numerical kink-antikink soliton collision solution and
corresponding solitary wave solution is presented in Fig-
ure 8 (a) and (b). As shown in the figure, the shape of
each soliton stays unchanged.
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FIG. 8: (a) The time evolution profile for the kink-antikink

soliton collision solution and (b) the corresponding solitary

wave solution. The shape of each soliton stays unchanged.

IV. SUMMARY AND CONCLUSIONS

In summary, I proposed an explicit scheme to solve the
Sine-Gordon equation numerically with no-flux bound-
ary conditions, which gave us several kinds of soliton so-
lutions. I presented the time evolution profile for kink
solitons, antikink solitons, kink-kink soliton collision and
kink-antikink soliton collision. In addition, I investigated
the properties of the kink solitons, demonstrating that
their shape did not change over time with acceptable
calculation error. The collision between two solitons was
elastic and each of them stayed unchanged after collison.
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Here I have studied two di↵erent algorithms for integrating di↵erential equations and applied
them to the chaotic system of three bodies free to orbit each other. These orbits were confined to a
two dimensional plane and given various initial positions and velocities. Not only that, but collision
parameters were added to show added physical e↵ects and better simulate what could be described
as a developing planetary system. As the system is intrinsically chaotic, it was very sensitive to
initial conditions. Due to these reasons, a symplectic algorithm was run several times under varying
initial parameters for each body (mass, position, and velocity) to locate potentially stable orbits.
Due to the volume of data produced, a random sampling method was used to locate stable orbits
and then those parameters were run on the other algorithm. But first the algorithms need to be
constructed.

I. INTRODUCTION

Multi body orbitals are an integral part of modern as-
tronomy. It is through almost pure gravitational inter-
actions that celestial systems form. These systems can
range from a multi star orbital system, to a standard solar
system to a series of lighter bodies interacting with each
other. Through observing these systems, one can make
predictions about what climates may be like on certain
planets and what the masses of the bodies may be, based
on periodicity. This of course is all done by calculating
the force using Newton’s famous law of gravitation:

~

F = G

⇣
m1m2

r

2

⌘
r̂ (1)

Where F is the force between the two masses, G is the
gravitational constant, each m denotes a mass of either
body, and r is the distance between the two masses. With
all the above information, scientists can even determine if
a planet will be habitable for humans should they visit it
in the future. By judging a planet’s average distance from
the sun as well as its mass, they can see if the planet’s cli-
mate and gravity would be suitable for terrestrial beings.
[1]Not only that, but gravitational perturbations in orbits
have even been used to locate new planets in the past.
Neptune, for example, was discovered due to abnormali-
ties in Uranus’ predicted orbit. Because Uranus deviated
from what experts were expecting, they decided that an-
other body must be perturbing its orbit. Hence, Nep-
tune was discovered. In more recent astronomy, orbital
deviations spotted in distant stars point astronomers to
information about the star’s surroundings that are not
readily visible to the telescope. These surrounding bod-
ies could be anything such as exoplanets, other stars, or
even black holes. By coming up with an updated model,
astronomers are able to figure out exactly what it might
be and where they can find it. It was through methods
such as these that dark matter was first theorized to exist
when bodies had perturbers that could not be seen and
could not have been black holes.

II. MODEL

For the majority of multi body problem with more than
two bodies, there is will be no analytical solution. [?
]This was proved by Heinrich Bruns and Henri Poincare
for three body problems in the 1680’s and was expanded
to encompass systems with higher numbers of bodies.
However, over the years, beginning with Lagrange and
Euler, analytical solutions have been discovered for three
body systems. In 2013, two physicists Milovan uvakov
and Veljko Dmitrainovi at the institute of Belgrade added
13 types of analytical three body solutions, thus bring-
ing the grand total up to 16. This was a huge leap in
discoveries. Each type of system is classified into a fam-
ily based on the characteristic shape and period of its
orbital. However, these families are exceptions to the
rule. The vast majority of 3 body systems are unstable
and have no analytical solution. Because of this, numer-
ical integrators are of utmost important when studying
such systems. One very important method of integration
is the Runge-Kutta Method. This is likely one of the
most famous integration methods available, especially
the Runge-Kutta 4 method, often referred to as RK4.
The basic formula for this method is shown below:

k1 = hf(xn, yn) (2)

k2 = hf(xn +
h

2
, yn +

k1

2
) (3)

k3 = hf(xn +
h

2
, yn +

k2

2
) (4)

k2 = hf(xn + h, yn + k3) (5)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (6)

Where h is a time step, and f essentially the di↵eren-
tial equation that you are trying to solve. [2]This is an
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explicit method that uses a trial step at a midpoint to
cancel out lower order error terms. As its name suggests,
the RK4 eliminates error to the fourth order. While this
is a generally accurate and popular method to go to, the
method has some flaws. Namely, the energy of the system
is not conserved. Generally, the energy changes as time
goes on which can lead to errors in calculations along
the way. Also, it should be noted that the method itself
is not time reversible, so making calculations backwards
in time can be a little tricky. However, since the early
1900’s when the RK4 method was first introduced, new
algorithms have come to take their place. A good ex-
ample is the Forest-Ruth algorithm. The Forest-Ruth
algorithm has the steps which follow:

x = x+ ✓

h

2
v (7)

v = v + ✓hF (x) (8)

x = x+ (1� ✓)
h

2
v (9)

v = v + (1� 2✓)hF (x) (10)

x = x+ (1� ✓)
h

2
v (11)

v = v + ✓hF (x) (12)

x = x+ ✓

h

2
v (13)

Where h is a given time step, F (x) is the force as a
function of position, ✓ is defined as:

✓ =
1

2� 2
1
3

(14)

And v is defined as:

v =
dx

dt

(15)

Like the RK4 it is a fourth order integrator, but it has
a few advantages. For one thing, the Forest-Ruth al-
gorithm is a symplectic integrator. This is an integra-
tion method that uses canonical transformations from
Hamilton’s Equations. This method better conserves the
energy of the system over long periods of time as the
method was made to conserve a slightly perturbed Hamil-
tonian of the system. [3]Also, because of the method’s
symmetry, the system is time reversible, thus allowing for
time reversal invariance. Along with the two numerical
integrator, I personally developed a collision model. This
was coded with the following lines:

if (sqrt(pow(x1-x2,2.0) + pow(y1-y2,2.0)) < .01)

{

col12 = 1;

if (m1 != 0)

{

px2 = ((px1*m1) + (px2*m2))/(m1+m2);

py2 = ((py1*m1) + (py2*m2))/(m1+m2);

m2 = m1 + m2;

}

}

Followed by the actual integration method and later by:

if (col12 == 1)

{

x1 = x2;

y1 = y2;

px1 = 0;

py1 = 0;

m1 = 0;

}

Essentially, if the bodies got too close to each other
(within a planetary radius), then they would collide
and stick, thus trigger the collision parameter (col12) to
switch from 0 to 1, which would be a trigger to skip cal-
culations done on planet one (for e�ciency). When done,
the program would use momentum conservation to find
the new velocity (px,py) of the composite body as well as
add the two masses. After each iteration of the method, it
would then write the coordinates of planet 2 onto planet
one so that data could still be recorded. If for some rea-
son, all three planets were to collide, the program would
set all coordinates to the origin and end the simulation
as there would be nothing of interest left. This model
served a dual purpose. On one hand, it added a touch
of realism. Granted it is simplified realism, but realism
none the less. From a more practical standpoint, the col-
lision parameters kept the bodies from getting too close
to each other. Before this was implemented, there would
be problems with separate bodies getting so close that
the gravitational force would diverge and send the bodies
spontaneously hurling into space. This model fixed that
problem by making two bodies that got close enough into
one single body and killing any two body forces between
the old bodies thereafter.

III. METHODS

When making the calculations, I had several obsticles
to overcome. I began by looking at preceding studies into
three body systems. I found certain sources that gave
initial conditions which claimed would provide stability.
However, as I modeled each of these, I saw that while they
may have seemed stable at first (if at all) the stability did
not last forever as each system broke apart. So, I was left
with little clue regarding where to start when looking for
a stable orbit. Hence, I decided to use a rather crude



3

brute force method. I originally decided that I would
loop over each initial parameter (mass, two dimensional
velocity, and two dimensional position) and scan the re-
sults for interesting trajectories and tweak them. At first,
I was looking to have 2000 variations on each parameter.
However, I soon realized that this would lead to 200015

data sets. Not only would that be an absurd amount of
data to go through, but also at least two thirds of them
would be redundant. So, I decreased each parameter to
have only about 20 variations as well as made unique po-
sition ranges for each body to ensure that there were no
redundant data sets. To further decrease the number of
data sets, I simply fixed the mass and initial position of
a body. In the end, I was left with about 109 data sets, a
large number for sure, but incredibly smaller than what
it I had originally intended. After running the Forest-
Ruth algorithm over a long period of time, I had to find
a way to analyze the data. As it would be nearly im-
possible to go through each and every set, I was inspired
by the Monte Carlo method. I decided to use a random
number generator to pull a number n and look at the
n

th data set produced. From the couple of hundred sets
of data I looked at, most seemed to be unstable or to
simply fly o↵ with little gravitational interactions with
their neighbors. However, some initial conditions yielded
interesting results. I took the most interesting data sets
and ran them again with a smaller time step, for better
resolution, as well as a longer total time, for better checks
on stability. After doing this, I ran the initial conditions
again in the RK4 algorithm so that I could compare the
two algorithms to see how well they matched up.

IV. RESULTS

Below, I have included several graphs displaying
the trajectories of di↵erent initial conditions. Please
note that the first and second graphs are of the same
initial conditions. The first is a model from the
Forest-Ruth algorithm while the second was modeled
with the RK4 method. As one might be able to tell,
the two methods seemed to match each other fairly
well. As such, the remaining graphs will only be
products of the Forest-Ruth algorithm. In the captions,
the initial conditions are listed in the following order:
x1, y2, x2, y2, x3, y3, px1, py1, px2, py2, px3, py3,m1,m2,m3

where the subscripts denote which body the parameter
refers to. Also note that body one is modeled in red,
body two in green, and body three in blue.
Bodies two and three interact with one briefly before

separating and obtaining an interesting oscillatory pat-
tern. It almost appears as if body two is leading body
three in a sinusoidal orbit.
As one can see, this is identical to the Forest-Ruth

result.
These initial conditions came from a given homework

problem early in the course. It was supposed to be a
stable three body system, however, one can clearly see
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FIG. 1: Forest-Ruth modeled with initial parameters: -2.5, 0,
2.5, 0, 0, 0, 0, -1.25, -1, 0.75, -1.25, 0.75, 1, 1, 1
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FIG. 2: RK4 modeled with initial parameters: -2.5, 0, 2.5, 0,
0, 0, 0, -1.25, -1, 0.75, -1.25, 0.75, 1, 1, 1

that the orbits fall apart after a certain period of time.
This is the Butterfly 1 pattern as described by Milo-

van uvakov and Veljko Dmitrainovi. For reasons I do not
know, the orbit was not stable as all as the three bodies
end up colliding and did not behave a bit as the publi-
cation said it would. However, this could be due to my
collision simulation which may have stopped the orbits
from reaching stability due to becoming too close and
colliding.
Shortly after the modeling begins, bodies one and two

collide and enter an orbit with body three. This orbit
ends up being unstable, however, as body three eventu-
ally collides with the composite body and the simulation
ends.
Shortly after the modeling begins, bodies one and two

collide and enter an orbit with body three. This time,
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FIG. 3: Forest-Ruth modeled with initial parameters:
0.970004, -0.243088, -0.970004, 0.243088, 0, 0, 0.466204,
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FIG. 4: Forest-Ruth modeled with initial parameters: -1, 0,
1, 0, 0, 0, 0.306893, 0.125507, 0.306893, 0.125507, -0.613786,
-0.251014, 1, 1, 1

the orbit appears to be stable, albeit chaotic.
No collisions in this one. However, bodies two and

three interact with wild chaotic behavior before flying o↵
into space while body one has essentially no interactions.

V. SUMMARY AND CONCLUSIONS

Regrettably, I was unable to find any truly stable or-
bits with my methods. Even initial conditions which were
given as being stable seemed to diverge at the end. At
least, that is true from what I know. I only looked at
a random sample of about a hundred models. That is
less than a thousadnth of a percent of the total data sets
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FIG. 5: Forest-Ruth modeled with initial parameters: -2.5, 0,
2.5, 0, 0, 0, 0, -1.25, -1, -1.25, -1.25, -0.25, 1, 1, 1
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FIG. 6: Forest-Ruth modeled with initial parameters: -2.5, 0,
2.5, 0, 0, 0, 0, -1.25, -1, 0.75, -1.25, 0.75, 1, 1, 1

that were calculated. It is very possible that I had a per-
fectly stable three body system, but did not see it. But,
upon looking at the literature of what have been found
to be stable initial conditions, It became obvious that
by my methods, I would have needed much more than
200015 data sets to find them for sure. This is because
the initial conditions of the published results have several
decimal digits of accuracy whereas my method only went
in intervals of 1

4 . However, I was able to see some truly
interesting orbital behavior. Not only that, but I was
able to model collisions, which gave a much more accu-
rate picture as to what might occur in the formation of
a celestial system. And with the collision system, I was
able to obtain somewhat stable orbitals with a collided
and uncollided body. My methods in programing were
rather straight forward and could be generalized from
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FIG. 7: Forest-Ruth modeled with initial parameters: -2.5, 0,
2.5, 0, 0, 0, 1, -1.25, 0, -0.25, 0.75, -1.25, 1, 1, 1

two to three dimensions fairly easily for future modeling.
In the end, I gained a deeper understanding of numerical
integrators and was able to directly compare them and
the results they would give.
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The most coherent state of a two-dimensional ferromagnet with disorder is not at the ground
state but at a finite temperature known as the Nishimori Temperature. Nishmori has proven the
result analytically. [1] This work seeks to prove the result numerically.

I. INTRODUCTION

The Ising model is a simple tool to study a multitude
of problems in statistical physics, and with some creativ-
ity, problems in biology, sociology, and computer science,
to name a few. One in particular is the minimization of
errors in the transmission of information through noisy
media. When transmitting information, one encodes in-
formation to be fed into a medium. In a noisy medium,
errors are introduced that obscure the real information.
The receiver then decodes the noisy signal and possible
errors are detected and corrected.

The Ising spin glass is a collection of anisotropic spins
S

i

= ±1, arranged in a lattice (square, hexagonal, etc.)
with nearest neighbor interactions J

ij

= ±1 (Figure 1).
The Hamiltonian, or the total energy of the system, is
given by

H =
X

hi,ji

J
ij

S
i

S
j

. (1)

Suppose the information to be sent is a configuration
of Ising spins {✏

i

= ±1}
i=1,...,N

. A simple way is to send
the interactions J

ij

= ✏
i

✏
j

. The receiver recieves the
noisy interactions J̄

ij

= �J
ij

and then finds the ground
state of the disordered Ising spin glass Hamiltonian. It

Monte Carlo Methods (Katzgraber)

of the system. When all spins are aligned, i.e., at low temperatures (below the
transition), the magnetization is close to unity. For temperatures much larger than the
transition temperature T

c

, spins fluctuate wildly and so, on average, the magnetization
is zero. Therefore, the magnetization plays the role of an order parameter that is large
in the ordered phase and zero otherwise. Before the model is described further, some
basic concepts from statistical physics are introduced.

Figure 6: Illustration of the
two-dimensional Ising model
with nearest-neighbor inter-
actions. Filled [open] circles
represent S

i

= +1 [S
i

= �1].
The spins only interact with
their nearest neighbors (lines
connecting the dots).

3.2 Statistical physics in a nutshell

It would be beyond the scope of this lecture to discuss in detail statistical mechanics
of magnetic systems. The reader is referred to the vast literature on the topic [18,31,
36, 43, 77, 79, 91]. In this context only the relevant aspects of statistical physics are
discussed.

Observables In statistical physics, expectation values of quantities such as the
energy, magnetization, specific heat, etc.—generally called observables—are computed
by performing a trace over the partition function Z. Within the canonical ensemble
[43] where the temperature T is fixed, the expectation value or thermal average of an
observable O is given by

hOi =
1

Z
X

s

O(s)e�H(s)/kT . (11)

The sum is over all states s in the system, and k represents the Boltzmann constant.
Z =

P
s

exp[�H(s)/kT ] is the partition function which normalizes the equilibrium
Boltzmann distribution

Peq(s) =
1

Z e�H(s)/kT . (12)

The h· · · i in Eq. (11) represent a thermal average. One can show that the internal
energy of the system is given by

E = hH(s)i , (13)

whereas the free energy F is given by

F = �kT ln Z . (14)

10

FIG. 1: Illustration of the two-dimensional Ising model with
nearest neighbor interactions. Filled [open] circles represent
S

i

= +1 [S
i

= �1]. The spins only interact with their nearest
neighbors (lines connecting the circles). Printed with permis-
sion from the author. [2]

is important to note that even if a small percentage q of
the interactions are incorrect, it is still possible to retrieve
the true configuration as long as errors are isolated from
each other because isolated frustration does not change
the ground-state configuration.

Nishimori proved analytically the proposed rule to as-

sign the decoded signal S
i

(T
N

) =
h�iiTN

|h�iiTN
| .[3] This ob-

servable is studied in detail to reproduce the analytic
conclusions of Nishimori.

II. MODEL, OBSERVABLES, ALGORITHM

The Hamiltonian of the Edwards-Anderson Ising spin
glass is

H(�
i

) = �
NX

ij

J
ij

�
i

�
j

, (2)

with Ising spins �
i

2 {±1} on the vertices of a square
lattice. We impose periodic boundary conditions that
deform the square lattice into a toriodal shape. The
toroidal square lattice has L ⇥ L = N sites. The interac-
tions are chosen from a bimodal (J

ij

= ±1) distribution
given by

P(J
ij

) = p� (J
ij

� J) + (1 � p)� (J
ij

+ J) . (3)

p is the probability of having a ferromagnetic bond,
q = 1 � p the probability of having an antiferromagnetic
bond. The pure Ising model is recovered for p ! 1. Fig-
ure 2 shows the phase diagram for the two-dimensional
±J Ising spin glass. The exact expectation value of the
energy can be calculated at the Nishimori Temperature
N

T

for values of p via

[hEi
T

]
p

=
�zN(2p � 1)

2
, (4)

where N is the number of sites and z is the number
of neighbors. The Nishimori Temperature can also be
calculated[4] from the percentage of antiferromagnetic
bonds q by

T
N

=
⇣1

2
ln

q

1 � q

⌘�1
. (5)

The observable S
i

(T
N

) =
h�iiTN

|h�iiTN
| has the following

motivation. The J
ij

= ✏
i

✏
j

interactions are transmitted
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FIG. 2: Phase diagram of the two-dimensional Ising spin glass
with ±J interactions. The shaded region is ferromagnetic,
while the white region is paramagnetic. Printed with permis-
sion from the author. [5]

in a noisy channel. Due to the noise it is possible for er-
rors to be introduced in the form of flipped interactions
J̄

ij

= �J
ij

with a probability q = 1�p. The receiver then
calculates the ground state of the new noisey Hamilto-
nian H̄ = � P

N

ij

J̄
ij

�
i

�
j

. Let S
i

= ±1 be the retreived
configuration. It is then possible to calculate an error
rate via

m =
1

N

NX

i

✏
i

S
i

, (6)

p
error

=
1 � m

2
, (7)

where m is the Mattis magnetization.[6] If the origi-
nal configuration is correctly retrieved, in other words,
✏
i

= S
i

then p
error

= 0. The goal is to minimize p
error

or maximize m. From maximum-likelihood decoding, a
function is chosen for for S

i

so that H̄ can be retrieved.

S
i

(T
N

) =
h�

i

i
TN

|h�
i

i
TN | (8)

Angular brackets denote a thermal average and square
brackets denote an average over disorder. (8) is then
averaged over disorder to reach the final inequality, the
analytical proof of which is refered to Nishimori.[1]

m̄(T, p) ⌘ [✏
i

S
i

(T )]
p

 m̄(T
N

, p) (9)

It is important to note that m̄(T, p) is not the ther-
modynamic magnetization [h�

i

i
T

]
p

. In other words, the
overall spin allignment is largest at the Nishimori Tem-
perature. The spin configuration at T

N

may be more
coherent than at T 6= T

N

.
The calculations of the Hamiltonian H̄ are done using

the Monte Carlo method. The Monte Carlo method uses

TABLE I: Parameters of the simulation: For each system size
N we perform N

sa

averages over a specific amount of disorder
q. N

sw

= 2b is the number of Monte Carlo equilibration
and thermalization sweeps, T

min

[T
max

] is the lowest [highest]
temperature simulated, and T

N

is the Nishimori Temperature
for a given value of p.

q N N
sa

b T
min

T
max

T
N

0.08 1024 1000 16 0.5 2.0000 0.818884
0.08 2304 1000 16 0.5 2.0000 0.818884
0.08 4096 500 16 0.5 2.0000 0.818884
0.109 1024 1000 16 0.5 2.0000 0.951929
0.109 2304 1000 16 0.5 2.0000 0.951929
0.109 4096 500 16 0.5 2.0000 0.951929
0.12 1024 1000 16 0.5 2.0000 1.003800
0.12 2304 1000 16 0.5 2.0000 1.003800
0.12 4096 500 16 0.5 2.0000 1.003800

repeated random sampling of the observable (8). The
choice of simulation parameters given in Table I is based
on the phase diagram of the ±J Ising spin glass given in
Figure 2. The three values of q illustrate the movement of
m̄

max

along the Nishimori line. q = 0.8 was chosen to ex-
plore the ferromagnetic phase. q = 0.109 was chosen near
the multicritical point, the largest value of q for which a
ferromagnetic phase may exist. q = 0.12 was chosen to
explore m̄

max

in the abscence of a ferromagnetic phase.

A detailed discussion of the algorithm applied to all
system sizes and values of q follows. Without loss of gen-
erality, the configuration to be sent is ✏

i

= 1 8 i, thus
J = 1. This allows for a simplification in the calculation
of (9) to a disorder average of S

i

. A random initial con-
figuration is generated. A random set of interactions J̄

ij

is chosen according to the desired probability of error.
The system is allowed to thermalize for 215 Monte Carlo
sweeps and measurements of the observable are recorded
for an additional 215.

One problem that arises is the spin reversal symmetry
of the problem. If the original configuration is ✏

i

= 1, it is
possible for the receiver to find a ground state of ✏

i

= �1,
due to the fact that both configurations have the same
energy. A list of potential solutions follows. The first
is making the choice of labeling one spin as correct, for
example ✏0 = 1, and if the receiver calculates �0 = �1
then the entire configuration is inverted. This solution is
undesirable because errors are introduced when the re-
ceiver correctly calculates �0 = 1 but the remainder of
the configuration is still inverted. A second solution is
including an external field in the Hamiltonian in order to
influence the spins to point in a preferred direction. This
solution was not chosen due to the large long range in-
teractions and extra computation involved in computing
the external field terms. A third solution is to fix cer-
tain to influence neighbor spins and the configuration as
a whole. This method was tested and but due to finite
size e↵ects the desired trend in the data is not apper-
ent. The method chosen for this study is to measure
the thermodynamic magnetization and simply multiply
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the configuration, magnetization, and local fields of each
spin by �1, essentially inverting the system.

P
N

i

�
i

< 0
is evaluated after each sweep and before the measure-
ment of observables. The inversion of the system only
takes place a few times before settling in the pre↵ered
configuration.

After each Monte Carlo sweep, the thermal average of
each spin, h�

i

i
T

is calculated by summing the value of
each spin. The thermal average is then divided by its
magnitude to obtain its sign. Finally the signs of all N
spins are averaged. For each sample the average sign
of spins is then averaged over disorder using jackknife
statistics to obtain errorbars.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5

<σ
> T

 / 
[ |

 <
σ

> T
 | 

] p

T

p = 0.92 (q = 0.08)

L = 32
L = 48
L = 64
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by a vertical line. Error bars are smaller than the symbols.
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FIG. 5: For q = 0.12, the Nishimori Temperature is indicated
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III. SUMMARY AND CONCLUSIONS

Figures 3, 4, and 5 show the coherence as a function
of temperature T for di↵erent system sizes. The data
show a peak, however it is away from the Nishimori Tem-
perature, indicated by a vertical line. This implies that
there does exist a finite temperature at which the sys-
tem is more coherent but current results show this may
not be the Nishimori Temperature for a finite size lattice.
Note that the peak does not shift towards the Nishimori
Temperature, indicating that larger system sizes than the
ones simulated will not improve the location of the peak
on the temperature axis.

Future work includes applications to higher dimensions
and chimeral topologies similar to those found in the D-
Wave One and D-Wave Two quantum annealer. The D-
Wave su↵ers from calibration errors in the interactions
between qubits. The obvious application is to determine
the best temperature to achieve cohernece despite these
calibration errors.
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The genetic algorithm is extremely versatile and widely used. This study attempts to pose a
method for using a genetic algorithm to solve the traveling salesman problem. Multiple methods
are posed and discussed. After a single method is selected a study is done to determine the optimal
value for the population size and mutation rate for di↵erent tour sizes. Genetic Algorithms and
simulated annealing are briefly compared at the end of the paper.

I. INTRODUCTION

The Genetic algorithm is an optimization algorithm
that mimics natural selection in order to find the ideal
solution of a problem. Genetic algorithms have a wide
range of applications including electromagnetics prob-
lems and schedule optimization. An initial set of solu-
tions called a population is randomly generated. The
traits of each solution are referred to as genes. This pop-
ulation of solutions is allowed to interact with each other
via user defined interactions in order to produce new so-
lutions. Admirable traits are preferentially passed on to
the children until all the solutions converge to a single
solution that hopefully represents the optimal solution.
There are three main functions carried out in a genetic
algorithm: selection, crossover, and mutation. A flow
chart of how the genetic algorithm works is shown in
figure 1. The selection process determines which solu-
tions will have an opportunity to pass their genes on to
the next generation. Selection can be accomplished by
either killing the least fit solutions or by preferentially
allowing fit solutions to reproduce themselves more often
into the next generation. The crossover process employs
some method to take two parent solutions and creates a
set of children solutions. A mutation changes the genes
of a single solution to create a new solution. There is a
limitless number of possible ways to define mutations or
crossovers.

In this paper I will propose an algorithm that opti-
mizes the Traveling Salesman Problem (TSP). The TSP
is an optimization problem that poses a set number of co-
ordinate pairs that we will call ”cities” from here on out.
The TSP produces a list of these cities called a tour, and
requires a person to visit every single one of these cities
while traveling the shortest distance possible and ending
in the city where the person started. A person can easily
solve the TSP for a small set of tours, but the solution
set of the traveling salesman scales as (N � 1)! (where N
is the size of the tour). That means that while a tour of
five cities only has 24 possible solutions, a number that
can easily be sifted through individually by a computer,
a tour of 30 cities has a solution set of over 1030. Cy-
cling through every possible permutation of cities would
be a nightmare even with a supercomputer. If your com-
puter could compare one trillion solutions per second, it
would still take over one trillion years to work your way

through the entire solution space. That’s where our ge-
netic algorithm comes in. By calculating and crafting
solutions based on the fitness of their predecessors, we
can skip investigating all of the solutions and hone in on
our most likely candidates. Defining a mutation strategy
is simple: switch two cities. The real struggle in imple-
menting a genetic algorithm lies in defining an e↵ective
crossover method and deciding how to calculate the fit-
ness of the population. After defining how the blocks of
the genetic algorithm will execute, there are two param-
eters to set: the mutation rate and the population set.
The mutation rate is the percentage of solutions that
will undergo a mutation after they are produced by the
crossover operation. The population size determines how
many solutions you allow to interact at any given time.
In this paper I analyze a few di↵erent methods for solving
the TSP with the genetic algorithm and compare their
merit. I will then discuss the e↵ect on the convergence
rate of the algorithm due to changing the population size
and mutation rate. Finally I will compare my algorithm
to another strategy, simulated annealing, for solving the
TSP.
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FIG. 1: The genetic algorithm starts with calculating the
fitness and then based on that fitness picks mates which are
then used to produce children. This process continues until a
satisfactory solution is found. [1]

II. SETUP

The first thing I had to decide was how I was going
to go about calculating the fitness of each solution. The
fitness must be maximized in the optimal solution, so
just taking the length will not work. The initial method
I used for determining the fitness was by simply taking
the inverse of the length.

fitness =
1

Length
(1)

After a few runs I realized that this method was not
di↵erentiating strongly enough between solutions during
the selection process. The second method I tried, which
converged much more quickly, was to pick a value higher

than the longest possible path and subtract the length
from that value.

fitness = 10000� Length (2)

Although this seems less rigorous because the possibil-
ity of having a fitness that is negative, this definition ac-
tually converges much faster, as long as the value is large
compared to the fittest solution the any negative fitness
values fall out within the first generation and cease to be
an issue. the selected parents for all of my algorithms
using a fitness dependent probability. [2]

roll = total_fitness * drand();

accumulator = 0;

for(i=0; accumulator <= roll; i++)

{

accumulator += fitness(population[i])

- min_fitness;

}

parent = i-1;

Each of my algorithms defined the mutation method to
switch two cities in the tour. I proposed three di↵erent
crossover methods.

III. PROPOSED CROSSOVER METHODS

For the first method I represented each city by a num-
ber 0�(N�1). I initialize an array the size of my popula-
tion and fill that array with another set of arrays that are
the size of my tour. Each of those nested arrays are filled
with each number in the range of 0� (N � 1). The lower
arrays each represent a single member of the populations
and the index of those arrays represented when the city
that is stored in the element is visited. i.e. the 0th ele-
ment is the first city visited, while the N � 1 element is
the last city visited. So if I store the number 5 in the 6th

element of the 3rd array, then that means that in the 3rd

solution the city that I chose to be represented by the
number 5 is visited 6th. This representation makes exe-
cuting a mutation very simple. Two cities are switched
by swapping the values stored in those array elements.

int s1 = rand() % TourSize, s2 = rand() % TourSize;

swap child[s1], child[s2];

As long as each number appears in each solution only
once then you can be certain that you have a valid and
complete tour. This representation ended up being non-
ideal because it makes searching for links rather di�cult.
To know if two solutions share a common link must be
done by searching through the array N times, which is
slow and impractical. This issue arises from the fact that
identical tours can be shifted by one element and ap-
pear by initial inspection to be completely di↵erent. The
crossover method for the first method I wrote took two
parents and selected a city at random. It compared the
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distance between the randomly selected city and the next
stop in both solutions and placed the shorter connection
in both parents and passed the two resultant solutions
on to the next generation.

/*randomly select a city*/

int site = rand() % TourSize;

for i = 1 ... N do: /*find the selected city falls in each tour*/

if ( parent1[i] == site){ index1 = i;}

if ( parent2[i] == site){ index2 = i;}

child1 = parent1;

child2 = parent2;

if ( Length ( parent1[index1], parent1[index1+1])

< Length ( parent2[index2], parent2[index2 +1]))

swap parent2[index2+1] with parent1[index1+1];

endif

else

swap parent1[index1+1] with parent2[index2+1];

endelse

This crossover does not converge to the optimal path
consistently. This method does not take into consider-
ation that sometimes the optimal solution does not re-
quire each city to be connected solely with the neigh-
boring cities that are closest. Also one of the solutions
produced only di↵ers from one of the parents by one con-
nection and the other is an identical copy of the other.
This causes the algorithm to converge more slowly es-
pecially if the initial population doesn’t contain optimal
connections. The second method uses the same represen-
tation for each solution as the first. The second method I
created took two parents and creates a child by randomly
selecting a segment of cities from one parent and copies
that segment into the child. It then fills the remaining
cities in the order that they appear in the second par-
ent [3]. The second crossover method is demonstrated
graphically in figure 2. This method did not consistently
produce children whose fitness exceeds their parents, and
therefore converged much too slowly. Taking random seg-
ments from each parent does not discriminate between
good traits and bad traits in parents. As stated above
this does not test for favorable links, so it heavily relies
on randomness to arrive at the solution. This fault causes
the solution to converge extremely slowly.

The final and most e�cient algorithm was also the
most complicated to implement. Like above each solu-
tion is represented by an array of size N . The index
of the array represents the city that is assigned to that
number. The value that is stored in the array represents
the city that will be visited next; i.e., if the number 5 is
assigned to the 8th element of the array, then that means
that the city assigned to number 8 will be followed by
the city assigned to number 5. This representation is fa-
vorable in that it is easy to see common links. All you
have to do to see a common link between two solutions
is compare each element of the array. This only requires
you to loop through the array once. The down side is
this representation was much less intuitive. For example
to switch two cities it is necessary to switch the array

FIG. 2: this diagram demonstrates the crossover methodology
of my second algorithm.

elements associated to that city, but you also must swap
the numbers each time they occur in the solutions.

int s1 = rand() % TourSize, s2 = rand() % TourSize;

for i = 1 ... TourSize do:

if (child[i] == s1)

child[i] == s2

endif

else if child[i] == s2

child[i] = s1

endif

done

swap (child[s1], child[s2])

Another complication is that testing for a valid tour
is no longer trivial. Because the stops are not listed se-
quentially, an invalid tour may arise when miniature, in-
dependent circuits arise. For the crossover, this method
compares two parents and copies each connection that
is shared by both parents into the child, and then it al-
ternates between the two parents and fills in empty con-
nections in the child. After that, all empty elements are
filled at random by cities pulled from the pool of unas-
signed cities [4]. With this representation it is possible
that an invalid tour of cities will be generated. It is pos-
sible that two complete but independent tours will be
created. To prevent this every insertion is checked before
it is accepted to ensure that a valid tour is created.

\*take every link found in both parents*\

for i = 1 ... TourSize do:

if ( parent1[i]==parent2[i])

child[i]=parent2[i];

endif
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done

for i = 1 ...TourSize do:

if(child[i] isn’t filled && switch is valid)

every odd iteration child[i] = parent1[i];

every even iteration child[i] = parent2[i];

endif

done

for i = 1 ... TourSize do:

while ( child[i] is empty )

int site = rand() % TourSize;

if (child[i] = site makes a valid tour)

child[i]=site;

endif

endwhile

done

This algorithm preferentially passes traits that are
found in both parents. This ensures that the next gener-
ation will possess traits that are commonly held by the
fittest solutions of the previous generation. The down
side to this new algorithm is that new connections are
only generated by mutation. This makes the genetic al-
gorithm unlikely to work its way out of metastable states
once stuck. To compare the three di↵erent methods I at-
tempted to optimize the same thirty city tour with each
method. I set the population size to be ten and the mu-
tation rate to be 20%. The third method converges the
fastest by far. Method 3 converged in only 10,000 gener-
ations, method 1 took almost ten times as long to con-
verge, and method 2 was not able to find the optimal
solution in the first 1,000,000 generations. The first and
third method both converged to the minimized value of
868.61. The second didn’t even breach a final path length
of 941.

IV. OPTIMAL MUTATION RATE AND
POPULATION SIZE

Setting the mutation rate and population size has a
large e↵ect on the convergence rate and picking a bad
combination of mutation rate and population size can
actually prevent a good algorithm at all. A larger pop-
ulation brings larger diversity to the initial population.
This trait makes the algorithm less likely to get stuck in
a metastable state, but makes the algorithm take longer
before it settles into equilibrium. A high mutation rate
allows solutions to jump out of metastable states by in-
jecting jolts of entropy into the genome, but a mutation
rate that is too high will overwhelm the crossover proce-
dure and cause the algorithm to diverge or just converge
too slowly to be useful. I tried to optimize a small tour
of twenty di↵erent cities using my third algorithm for ten
di↵erent mutation rates in the range of 5%-50% for each
of the ten di↵erent population sizes in the range of ten to
one hundred solutions. I took the average over ten runs
for each combination of the mutation rate and popula-
tion size in those ranges. In my data I considered that
each crossover executed as one unit of time. I decided not
to count generations, because a generation for a popula-
tion size of one hundred takes substantially longer than
for a population of ten. This convention considers the
di↵erence in time spent executing mutations and select-
ing parents is negligible for di↵erent population sizes and
mutation rates compared to the time spent performing
crossovers. The results are displayed as a heat map in
figure 4. The value of the color gradient is determined
by the amount of time the algorithm takes to arrive at a
near optimal solution I defined this as within fifty length
units of the actual optimal solution. The algorithm con-
verged most quickly for a population size of twenty and
a mutation rate of 10%. For small population sizes the
optimal mutation rate was slightly higher than that for
larger population sizes. This makes sense because large
population sizes start with more diversity and for that
reason already take more time to shake down to an op-
timal solution. I thought that larger populations might
converge more e�ciently for problem sizes with a larger
solution space, so I ran a select combination of popu-
lation sizes and mutation rates on the seventy-two city
tour we solved previously by using simulated annealing.
None of the algorithms converged within the time allo-
cated to the optimal solution, but contrary to my hy-
pothesis the smaller population sizes and mutation rates
still converged more quickly. In fact the parameters that
converged the most quickly of those that I tested were a
population size of ten and a mutation rate of 10%. This
result is supported by a paper by Haupt [1]. Ultimately
the best values for the parameters are highly dependent
on the problem that is being addressed. Compared to
simulated annealing the genetic algorithms I created con-
verge much more slowly. My genetic algorithms ran for
over twelve hours of real time and still did not arrive to
the optimal solution that simulated annealing found in
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about fifteen minutes. This is largely due to the genetic
algorithms propensity to stall out in metastable states.
Whereas simulated annealing is meant to occasionally
jump up to a worse solution in order to break free of
metastable states, the genetic algorithm relies only on
random mutation and solutions that undergo a mutation
that make them a worse solution are often immediately
killed o↵ by our selection function. When a metastable
stable is deep it will often take several mutations that
actually decrease the fitness of the solution before it is
able to get free. This issue in my algorithm may be fixed
by giving the solutions a larger jolt by each mutation by
defining the mutation to switch multiple cities.
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FIG. 4: Heat map that shows the convergence rate of the
genetic algorithm for di↵erent values of the population size
and mutation rate.
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V. SUMMARY AND CONCLUSIONS

In this paper I proposed and compared multiple meth-
ods of applying the genetic algorithm to the TSP. the
genetic algorithm is best used for finding near ideal
solutions quickly. The genetic algorithm scales espe-
cially poorly for problems with a large number of deep
metastable states. I found data supporting that smaller
population sizes and medium mutation rates are superior
to large population sizes and small mutation rates. Possi-
ble ways that I could have improved upon my algorithms
is by changing the definition of fitness to better highlight
positive traits and change my definition of the mutation
operation in order to give the solutions larger jolts in
order to help dislodge them from metastable states. In
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with a population size of 10 and a Mutation rate of

conclusion, I have shown that while there are potential
methods that can theoretically optimize the TSP and
even very e↵ectively optimize short tours, there are bet-
ter approaches to the TSP, such as simulated annealing.
The genetic algorithm works well to quickly find near
optimal solutions to problems, but when the problem re-
quires the absolute best optimization, other algorithms
are probably better suited.
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Wang - Landau algorithm is presented and applied for two-dimensional Potts model. Algorithm
uses random walk in energy space to obtain the density of states for the Potts model. Density
of states converges to true value using iterations of modification factor f which first is taken as
value close to e and then for subsequent iteration accepts smaller value. Direct calculation of the
density of states allows to use formulas from statistical mechanics to find out average values for
thermodynamic quantities such as internal energy, magnetization ets. Algorithm is then applied to
calculate the density of states of Q = 8 and Q = 10 Potts model where contrary to the Ising model
spins are allowed to have Q values from 1 to Q.

I. INTRODUCTION

Computer simulations have become very interesting
topic in condensed matter physics because of their versa-
tile applications. One of them is to study phase transi-
tions and critical phenomena which happen at low tem-
peratures. Metropolis algorithm appears to be the first
algorithm to do this job [1]. During experiment Metropo-
lis algorithm creates representative small ensemble and
uses it to find thermodynamic averages. Appearance
of metastable states at first order transitions and crit-
ical slowing down at continuous transitions do not let
Metropolis algorithm to sample energy states. This hap-
pens because of Boltzmann criteria used in the algorithm
to become very small and it becomes locked for long time
in one of the multiple probability maxima states, not
giving possibility to sample other states. Multicanoni-
cal ensemble method [2] was suggested to overcome the
tunneling barrier between coexisting phases at first-order
transitions. Cluster methods [3, 4] were implemented to
reduce critical slowing down. In order to reach proper
accuracy re-weighting techniques [5] were used.

All these algorithms gave good results but they su↵er
from systematical errors growing up and not letting to
properly calculate probabilities for large scale systems.
Wang-Landau algorithm solved this problem and gave
good performance for large-scale systems. In their paper
[6] Wang and Landau were able to calculate the density
of states for up to 256x256 2D Ising and 200x200 2D
Potts systems whereas Lee’s results for entropic mod-
elling gave good results up to 24x24 Q=10 2D Potts sys-
tem and 4x4x4 3D Ising model [7]. After the density
of states is known it is simple matter to find thermody-
namic quantities. In this report Wang-Landau algorithm
is implemented using C programming language.

II. DESCRIPTION OF WANG-LANDAU
ALGORITHM

Wang-Landau algorithm uses random walk in energy
space with a ”flat histogram”. This is implemented by
choosing at random spin and changing its value according

to the probability which is proportional to the reciprocal
of the density of states corresponding to the energy E
associated with resulting spin configuration. This con-
dition makes algorithm quickly sample all energy levels
which usually takes long time in case of unbiased random
walk in energy space. First, g(E) of each energy level is
set equal to 1. Then at random choose spin and choose
at random spin value, calculate energy of whole system
associated with this spin change giving for example E2.
Then the transition probability from state E1 to E2 is
defined as

p(E1 ! E2) = min(
g(E1)

g(E2
, 1).

This implies that spin configuration with E2 is accepted
if g(E2)  g(E1), otherwise it is accepted with proba-

bility g(E2)
g(E1)

. This means we generate random number

between 0 and 1 and compare it with g(E2)
g(E1)

, if the ran-
dom number is smaller, then E2 state is accepted. Per
each visit g(E) is increased by multiplying by the prede-
fined value f which is usually accepted as e. g(E) is thus
continuously changing its value during the experiment as
g(E2) ! f⇥g(E2). If move from E1 to E2 is not allowed
then g(E1) ! f⇥g(E1) is done. During the random walk
the a number of visits of each energy level is recorded as
a histogram H(E), meaning H(E) ! H(E)+1. Number
of visits per energy level must be not less then predefined
percentage of histogram average which is usually between
0.8 and 1. After each energy histogram bin reaches the
histogram average, modification factor f is changed as
f !

p
f . After each modification of f all histogram val-

ues are zeroed. But we still keep record of ln(g(E)). This
makes one iteration of the density of states. We keep go-
ing this until f reaches value 1.00000001. Therefore, we
will have altogether 27 iterations during which density of
states g(E) slowly converges to its true value. Usually the
density of states is very large number, reaching for exam-
ple for 10x10 Ising spin system value of 2100 = 1.3⇥1030.
Because of this it is convenient to work with ln(g(E)) giv-
ing convenient double numbers operations for any pro-
gramming language. The check on the flatness of his-
togram is done after 10000 sweeps as it was done in orig-
inal paper [6]. Here one sweep means N ⇥ N random
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choices of spin and changing its value and doing above
explained probability transition check. Here N ⇥ N is
the number of spins.

The resultant density of states must be normalized
which is usually done by knowing the number of states
for the ground level. In case of Q=10 Potts model it is
equal to Q. Then normalized density of states becomes
ln(gn(E)) = ln(g(E))� ln(g(E = �2⇥N ⇥N)) + ln(Q).

After the density of states is found it becomes simple
matter to calculate thermodynamic quantities. First, we
find internal energy by using

U(T ) =

P
E E ⇥ g(E)e�E/kBT

P
E g(E)e�E/kBT

Then specific heat is found from formula for the thermal
fluctuations

Cv =
< E2 > � < E >2

kT 2

Then by using

F = �kT ln(Z)

where F is the free energy of the system, entropy can be
calculated using

S(T ) =
U(T )� F (T )

T

Here

Z =
X

E

g(E) exp(��E)

is the partition function of the system.

III. APPLICATION OF THE WANG-LANDAU
ALGORITHM TO TWO DIMENSIONAL POTTS

MODEL

The problem originally proposed to Potts by Domb
was to regard the Ising model as a system of interacting
spins. Then the generalization was to consider a sys-
tem of spins confined in a plane, with each spin having q
equally spaced directions specified by angles. Potts was
able to find the critical point of this model on square lat-
tice for q = 2, 3, 4. But together with this he included the
critical point for all q of the modelH = �

P
i,j "�i,j . This

model has the name of Potts model. This model showed
afterwards wide application to the grain structure for-
mation because of the similarities of space-filling arrays
of cells that evolve to minimize boundary area [8]. This
finds applications in the simulations of microstructural
evolution. In our case the hamiltonian of the system is
similar to above with " =1 corresponding to ferromag-
netic case

H = �
X

i,j

�(qi, qj).
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FIG. 1: Logarithm of the density of states g(E) for the Q=10
Potts system for N=4, 8 as function of E per lattice site.

Here q= 1,2, ..Q.
The concrete implementation of the Wang-Landau al-

gorithm becomes as following:
1) initialize spin system as each spin having random Q

values from 1 to Q,
2) choose at random spin from 1 to N ⇥ N creating

trial state,
3) measure energy of the trial state,
4) decide to choose or not the trial state with transition

probabiltiy p(E1 ! E2) = min( g(E1)
g(E2

, 1),

5) compute ln(g(E)), H(E) of the resulting trial state,
6) repeat steps (2) -(5).
During the course of this simulation modification fac-

tor f and histogram H(E) are monitored as it was de-
scribed earlier. We also bin the energy values since en-
ergy levels are enumerated for these systems and equal
to 2 ⇥ N ⇥ N . In order to have positive indices we lift
energy bins to that value.
2D problem is better handled by transforming it to 1D

by enumerating all spins from left to right and contin-
uing enumeration on next rows. In this case so called
neighbour matrix must be generated which is 2D array
in the form nb[j][i], where j is the number between 1 and
4 showing the neghbour ( 1 is ”up”, 3 is ”down”, 2 and
4 are ”right” and ”left” neighbours), and i denotes site
number in 1D line.
In Fig.1 ln g(E) vs E/(N ⇥ N) dependence for Q =

10, N = 4, 8 is shown to be well in accordance with low
energies corresponding to low g(E) and high energies to
high g(E).
The maximum value for case of N = 8 is well in ac-

cordance with results in [9] being equal to exp(145.16) =
1064, as it should be for Q = 10, N = 8 system giving
maximal density of states equal to QN⇥N = 1064. This
correct value of the maximal density of states tells that
the implementation of the program is good. As it was de-
scribed above, we used ln(gn(E)) = ln(g(E))� ln(g(E =
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�2 ⇥ N ⇥ N)) + ln(Q) normalization for the density of
states.

In Fig.2 final histogram of energy for the last iteration
of random walks for the case of Q = 8, N = 4, 8, 16 is
shown. It describes total number of visits per each en-
ergy level in the final iteration of the g(E). Usually it
is not possible to keep all histogram values uniform and
algorithm allows to keep at 0.8 value, that is each his-
togram value shouldn’t be smaller than 0.8 of average
histogram value.

Potts model is known to have double-peaked canonical
probability distribution at the transition temperature Tc

for the 1st order transition. We compute it at the end
of simulation having known all the density of states g(E)
using formula

P = g(E)exp(��E)

It is interesting to look at the evolution of the double-
peaked canonical probability distribution starting from a
above transition temperature Tc to temperatures lower
than Tc. Fig.3 shows this evolution for the case of
Q = 10, N = 8 case. It can be seen from figure that at
T=0.7249 second peak is starting to appear. Probability
distribution for T = 0.7200 appears to be very close
to the transition temperature, whereas T = 0.7149 has
passed through Tc. Usually, at transition temperature
two peaks are of same height. This can be seen in the
Fig.4 where we simulated canonical probability distribu-
tion for the case of Q = 8, N = 16 with Tc = 0.7519.
Double-peaked behavior of the probability distribution
usually signals about coexistence of two phases near the
transition temperature - ordered and disordered ones. As
the system’s scale gets higher, that is N gets higher, more
these two peaks become pronounced and the dip in be-
tween them gets lower and lower. It is exactly this feature
of the canonical probability distribution function which
doesn’t allow good sampling in other than Wang-Landau
algorithms because extremely long time is required for
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the system to travel from one peak to the other in en-
ergy space. With Wang-Landau experiment this is over-
come because of the random walk in energy space biasing
visiting all energy levels uniformly.
Fig.5 shows the temperature dependence of the inter-

nal energy in vicinity of the transition temperature. For
Potts model the transition temperature is found from re-
lation

Tc =
1

ln(1 +
p
Q)

,

which for the case of Q = 8 is equal to 0.7449 depending
in addition also to the value of N . it is seen that transi-
tion temperature has correct positioning. This step - like
behavior of the internal energy at the transition tem-
perature shows first-order phase transition from ordered
phase to disordered phase.
Likewise, temperature dependence of the specific heat
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also shows as the peaking at the transition temperature
which is shown in Fig.6. The additional bump at lower
than transition temperature doesn’t have to be there. It
may happen because it was derived from derivative of the
internal energy, not from the fluctuations formula. This
can be solved by changing in the program which involves
putting several Markov chains and thus evaluating mean
< E > and < E2 > and calculating the specific heat
from fluctuations.

Finally, the temperature dependence of entropy per
spin for Q = 10, N = 4, 8, 16 is shown in Fig.7. Like the
internal energy, it has step-like change at Tc.

For both cases, in temperature dependence of the inter-
nal energy and entropy, step-like changes will get sharper
if N gets larger thus approaching the thermodynamic
limit behaviour. It is possible to find latent heat from
these figures.
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FIG. 7: Temperature dependence of the entropy of the Q=10
Potts system for N=4, 8, 16.

IV. SUMMARY AND CONCLUSIONS

E�cient Wang-Landau algorithm is described and im-
plemented using C programming language. Because of its
specific transition probability in choosing trial site which
is proportional to reciprocal of the density of states, algo-
rithm allows quickly sample states and give good results
for even large systems. Modification factor f allows to it-
erate the density of the states so that it slowly converges
to its true value, as we saw it in case of maximal density of
states for the case of Q = 10, N = 8 where we found good
agreement between computer experiment and theoretical
value of maximal density of states. Energy values for the
trial states have integer values, this allows to use these
energy levels as the bins with respect to which we can
enumerate energy levels even for large systems using the
possibilities of computer programming. Correctly found
transition temperatures show that the algorithm works
fine.
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We studied the breathing modes of various types of molecules under a harmonic potential em-
ploying molecular dynamics. We start by studying simple systems that contain two, three and four
atoms, as well as a C60 buckminsterfullerene (shortened to fullerene) that has a truncated icosa-
hedral structure [1]. We reveal the breathing modes and the energy conservation of these systems
with respect to time.

I. INTRODUCTION

Carbon-based nanostructures, such as graphene, nan-
otubes and fullerenes have gained a lot of attention due
to their unique properties and potential for nanotechno-
logical applications [2–5]. In fact, an entire journal was
devoted to fullerenes, nanotubes and carbon nanostruc-
tures. While graphene has been discovered relatively re-
cently [2], the discovery of buckminsterfullerene C60 goes
back to 1985 [6], with its existence suggested in 1966.

Calculating vibrational modes with experimental data
plays an important role in determining the structure of
C60 and C70, which were originally discovered as peaks
in the mass spectrum analysis of carbon clusters. Fur-
thermore, fullerenes can be viewed as building blocks for
nanomaterials, and as such, determination of their vi-
brational spectrum is an important step in the studies of
more complicated nanomaterials.

On the other hand, fullerenes are highly symmetric
molecules, thus studying their spectrum is aesthetically
pleasing. Fullerenes provide a great playground for group
theory techniques and for molecular dynamics of di↵erent
levels of complexity for the same reason [7–9].

Finally, it has recently been claimed that buckminster-
fullerene C60 can be an elixir of life - according to [10],
it can increase the lifespan of rats by about 90%.

To study the interaction/breathing dynamics of these
molecules, we used a couple of standard algorithms avail-
able to us. We also started o↵ with far simpler molecules
as a proof of concept and then scaled up to the fullerenes.

II. ALGORITHMS

A. Dynamics

There are a few symplectic integrators available that
we can use. We used the Velocity Verlet algorithm as
well as the Forest-Ruth algorithm to compute the time
evolution of the coordinates. We did not pursue Runge-
Kutta (RK4) algorithm because it does not conserve en-
ergy, and we needed something that conserves energy in
the system.

We started o↵ with the harmonic potential,

U(~r1,~r2,~r3...) = 1

2

X

i,j

kij(|~ri � ~rj |� lij)
2 (1)

where we sum j over neighbors of i. We define ri as
the position of atom i, kij as the bond strength between
atoms i and j, and lij as the bond length between atoms
i and j.

1. Velocity Verlet

Velocity Verlet is a second order integrator. This
method is similar to the leapfrog method with the dif-
ference being velocity and position are not calculated at
the same time step for leapfrog. The algorithm is as fol-
lows:

Let ~r n+1
i = ~ri((n+ 1)�t)

~v

n+1
i = ~vi((n+ 1)�t)

then, ~v n+1/2
i = ~v

n
i +

�t

2mi

~

Fi({rnj })

~r

n+1
i = ~r

n
i +�t ~v

n+1/2
i

~v

n+1
i = ~v

n+1/2
i +

�t

2mi

~

Fi({rn+1
j })

(2)

where,

~

Fi = �@U({rnj })
@~ri

(3)

Velocity Verlet has an error in each position step of
O(�t

4), and each velocity step of O(�t

2). The global
error present in both position and velocity is O(�t

2). In
a molecular dynamics situation like the one here, global
error is far more relevant than local error. Hence, Veloc-
ity Verlet is a second order symplectic integrator.
In principle, it would’ve been possible to perform

this integration using a basic Strömer Verlet integration
(without velocities) since all we need are the time evo-
lution steps of coordinates. However, we used Velocity
Verlet because knowing the velocities at those steps can
be useful in calculating the energies.
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2. Forest-Ruth

Forest-Ruth is a symplectic algorithm of the fourth or-
der. It is described (along with a more general approach)
in [11, 12]. Let us subdivide a temporal step into four
sub-steps and write

~v

n+1/4
i = ~v

n
i +c1�t

~

Fi({~r n
j })

mi

~r

n+1/4
i = ~r

n
i +d1�t~v

n+1/4
i

~v

n+2/4
i = ~v

n+1/4
i +c2�t

~

Fi({~r n+1/4
j })
mi

· · ·
~r

n+1
i = ~r

n+3/4
i +d4�t~v

n+3/4
i

(4)

The crucial step is the derivation of the coe�cients
c1 . . . c4 and d1 . . . d4. In the original paper [11] it
has been done numerically and then checked analyti-
cally, later more elegant approaches based on the Baker-
Campbell-Hausdor↵ formula have been developed [13].
We use the following coe�cients

c1 = x+ 1
2 , d1 = 2x+ 1

c2 = �x, d2 = �4x� 1
c3 = �x, d3 = 2x+ 1
c3 = x+ 1

2 , d4 = 0

(5)

where x = 1
6

�
21/3 + 2�1/3 � 1

�
.

B. Mode Analysis

Let us assume all atoms have unit mass and all
bonds have unit sti↵ness. In order to find modes
semi-analytically, we represent potential energy function
U({~rj}) (1) as a bi-linear form in the displacements �~rj

from the equilibrium positions ~rj,0. In other words we in-
troduce displacement vector with 3N components (where
N is number of atoms in the molecule)

R =

0

BBB@

~r1

~r2
...
~rN

1

CCCA
�

0

BBB@

~r1,0

~r2,0
...

~rN,0

1

CCCA
, (6)

and find a 3N ⇥ 3N matrix U such that,

U({~rj}) = R

T
UR+O(||R||4). (7)

In principle, U can be defined as

Uij =

✓
@

2U
@Ri@Rj

◆

equilibrium

(8)

The problem of finding the vibration modes of the
molecule is then equivalent to the problem of finding

eigenvalues and eigenvectors of the matrix U [14]. Matrix
U is positively defined, thus all its eigenvalues �m � 0.
Mode frequencies are given by !m =

p
�m, while eigen-

vectors correspond to the displacement of atoms within
the given mode. The mode analysis is performed using
MATLAB software package, due to its ready-to-use linear
algebra routines for eigenvalue search problems and it’s
graphics capabilities. The key part of the mode search
algorithm is the generation of the matrix U :

%atomsX(i,:) contains Cartesian coordinates of

%atom i, and bonds(i,j) contains the number of

%j-th neighboor of atom i.

for i = 1:Natoms

for b=1:Nbonds;

j=bonds(i,b)+1;

dX = (atomsX(i,:)-atomsX(j,:));

eX = dX./norm(dX);

for nu=1:3

for mu=1:3;

%i and j enumerate atoms,

%nu and mu - Cartesian coordinates

p = (eX(nu)*eX(mu));

M(nu,i,mu,i) = M(nu,i,mu,i)+p;

M(nu,i,mu,j) = M(nu,i,mu,j)-p;

end;

end;

end;

end;

M = M/2;

U = (reshape(M, D*Natoms, D*Natoms));

[V,lambda] = eig(U);

C. Visualization

The Visualization subroutine was implemented in
MATLAB as well. The atoms are represented as spheres
of color 0 (in a standard MATLAB color scheme 0 stands
for dark blue color), while bonds are represented by cylin-
ders of color 1. The radius of the spheres and cylinders
as well as number of constituent polygons can be varied
easily. When it comes to rendering the animations, we
can incorporate slow rotation of the entire scene, allowing
us to observe the molecule from di↵erent angles.

III. RESULTS

We started with the trivial case of the two atom sys-
tem. Here we have six degrees of freedom. Five of these
are zero frequency modes that can either be transnational
or rotational. Oscillations of the only remaining degree of
freedom and the energy conservation are consistent with
what is expected from a harmonic potential like the one
used here (1).
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FIG. 1: Here, we can see the way three modes that were ex-
cited behave. The first mode has a frequency of

p
1.5. The

second and third modes have a frequency of
p
0.75. Since the

second and third modes are degenerate, any linear combina-
tion of those two modes is possible.

The three atom system is no longer an exercise in triv-
iality. We now have three modes we can excite. Fig. 1
shows the di↵erent possible modes of the molecule.
The four atom system has twelve degrees of freedom

and six of those correspond to translations and rotations
of the system as a whole. Four of these modes can be
represented as two adjacent atoms oscillating away from
each other, and these have a frequency of 1. Since we do
not have a torsion potential, there is no returning force
when atoms go in and out of the plane which gives us
two more zero frequency modes.
Let us now turn to the study of the buckminster-

fullerene C60. The mode spectrum is presented in Fig.
2, along with the shapes of the lowest (radial breathing
mode) and the highest modes. We note that some of the
modes are not directly accessible to standard excitation
methods, such as infrared or Raman spectroscopy [4]
Having established the vibrational spectrum, we can

use it as a benchmark for the integration schemes. First,
let us excite the lowest-order mode and take a look at
the energy as a function of time for di↵erent time steps.
Theoretically the energy should stay constant; we can
see that both algorithms provide a constant energy on
average. However, Forest-Ruth algorithm provides much
smaller deviations of the total energy within the cycle
[Fig. 3]. Additionally, we plot relative energy deviation
as a function of time step size �t [Fig. 6] to make sure
that the Forest-Ruth method error decreases as �t

4 and
Velocity Verlet method error scales as �t

2.
Energy conservation is an intrinsic property and the

strong side of the symplectic algorithms, such behavior
is to be expected. However, the algorithms do not have
to a priori respect the mode structure, i.e. the energy
distribution among the modes does not have to be con-
served. To test this aspect, let us excite a mode of the
molecule and look at the energy in the other modes. The-
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FIG. 2: Vibrational spectrum of the Buckminsterfullerene C60

with bond strength and atom masses set to unity. The inset
shows the lowest-frequency mode (lower right corner and the
highest frequency mode (upper left corner). The solid blue
line with squares shows our results, the dashed green line
with circles shows the results by [15].

0 50 100

�0.01

0

0.01

0.02

Time

�
E

 
/
 
E

0 50 100

�2

0

2

4

6

x 10

�4

Time

�
E

/
E

0 50 100

�1

0

1

2

3

x 10

�4

Time

�
E

 
/
 
E

0 50 100

�10

�5

0

5

x 10

�5

Time

�
E

 
/
 
E

Verlet

Forest�Ruth

(a) (b)

(c) (d)

FIG. 3: Relative deviation of the energy of the lowest fre-
quency mode of the C60 from the initial value as a function
of time for di↵erent integration time steps: (a) �t = 0.5, (b)
�t = 0.1, (c) �t = 0.05, �t = 0.01 obtained with veloc-
ity Verlet method (solid blue line) and Forest-Ruth method
(dashed green line).

oretically, energy should stay in the same mode while in
the numerical approach it can get dispersed into other
modes (in principle, for high amplitudes, non-linearity
related to the O(||R||4) term in the Eq. (7) sets in, and
the modes become actually coupled). We see that the
portion of energy leaking in other modes is on the order
of 10�4 for the highest-frequency mode, and is on the or-
der of 10�3 for the lowest-frequency mode [Fig. 5]. With
decreasing step-size both methods converge onto a single
specific temporal profile of the energy leak, suggesting
the nonlinear coupling that follows from the Eq. (1).
Having established the limits of applicability of our nu-

merical integration scheme, let us proceed to some more
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FIG. 4: Dynamics of C60 after one atom being pulled out (a)
and released (b)–(d), and the corresponding spectrum of such
vibration.
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FIG. 5: A portion of energy contained in the modes be-
sides the excited one in the initial condition when calculated
with velocity Verlet method (solid blue line) and Forest-Ruth
method (dashed green line). Initial condition is (a),(b) high-
est frequency mode and (c),(d) lowest frequency mode; inte-
gration time step is (a),(c) 0.5 and (b),(d) 0.1. The conver-
gence of both methods to the same curve at the smaller time
step is indicative of the nonlinear mode coupling, taken into
account in the dynamics model, but neglected in the mode
analysis.

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

∆ t

m
a

x
∆

E
/E

Forest-Ruth Velocity Verlet

FIG. 6: Relative deviation in energy as a function of time
step. Velocity Verlet method (dashed green line) provides
second-order convergence, while Forest-Ruth method (solid
blue line) provides fourth order convergence.

interesting matters. Our numerical codes integrate the
equations starting from any initial condition, and as such
it is tempting to try some exotic vibrational regimes. For
example, one can take one atom, pull it somewhat away
[Fig. 4(a) ]and let go [Fig. 4(b)–(d)]. The spectrum of
such vibartion, maintained accurately by the simulations,
is shown in Fig. 4.

IV. SUMMARY AND CONCLUSIONS

As expected, the Forest-Ruth algorithm gave us more
precise results than the Velocity Verlet algorithm. With
all the di↵erent types of molecules, we generated the
bonds and initial positions data of the atoms using MAT-
LAB. This data was then fed into the C++ program that
contained the algorithms to compute the dynamics. The
output from this C++ program contained the time evo-
lution of the coordinates and velocities. This output was
then imported into MATLAB to perform visualizations
of the respective molecules. We also performed mode
analysis to compare our results using MATLAB

For the simple systems we studied, such as molecules
with 2-4 atoms, the results of the integration coincided
well with the mode analysis. For complex systems like
the Buckminsterfullerene, the results of the integration
did coincide well with the mode analysis only at the small
perturbation amplitudes. The larger was the perturba-
tion, the faster the system tends to deviate from the lin-
ear regime described by the mode analysis, suggesting
the role of nonlinear coupling e↵ects in the potential (1).

In principle our code is suited for studying vibrational
dynamics of carbon systems of any finite size, and, with
very few modifications, of any molecule with given equi-
librium atom positions and bonding potential.
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Over the past decade there has been significant advancements in the capabilities of graphics pro-
cessing units (GPU’s) to perform tasks that were once relegated to large clusters of central processing
units (CPU’s). Parallelization of tasks such as matrix multiplication, sorting, and sequence match-
ing are just a few examples of this. With the increase in the capabilities of hardware came a similar
increase in the capabilities of software to achieve this general purpose computation on graphics
processing units (GPGPU). Programming languages such as OpenCL, OpenGL, and CUDA have
been at the forefront of this field. This report focuses on the use of OpenCL to generate images of
fractal geometries using a single GPU and compares the run time to the same calculation performed
on a single CPU. Parallelization of complex number fractals and iterated function system fractals
are compared. A speed up by a factor of nearly 40 is observed.

I. INTRODUCTION TO FRACTALS

It would be nice to start any discussion of fractals and
the theory behind them with a definition. Unfortunately,
there is no consistent definition in the literature. Man-
delbrot gave his original definition of a fractal as a set of
points with a Hausdor↵ dimension strictly greater than
its topological dimension [1]. Other authors may use
a di↵erent type of dimension such as box dimension or
packing dimension to describe a fractal, and some varia-
tions of dimension may be more appropriate for certain
types of fractals. It is appropriate for the scope of this
research to loosely define a fractal as a set of points that
has:

• fine structure at all scales

• self similarity

• a “fractal dimension” greater than its topological
dimension

The first of these requirements is satisfied if the struc-
ture of the fractal has the same level of complexity at all
magnifications. The second requirement states that the
structure of the fractal should be replicated (although
perhaps not exactly) at higher magnifications. The third
requirement is simply a re-statement of Mandelbrot’s def-
inition, with the freedom to select a valid definition of di-
mension for the fractal being considered. The dimension
of a fractal can be thought of as the amount of space it
fills. A classic example of this is the Koch curve which
has a dimension of roughly 1.262 [2] and is shown in Fig-
ure 1. The Koch curve is constructed by taking a line
segment and breaking it in three, replacing the middle
segment by two copies of itself, and connecting the two
copies to each other and the first and third segments.
This is repeated for each resulting segment ad infinitum.
In this way, what started as a one-dimensional line seg-
ment with finite length, will now have infinite length and
be enclosed in a finite area. Clearly, the Koch curve will
not fill the two-dimensional space, but it can no longer

FIG. 1: Koch curve.

be considered a one-dimensional object either. It’s di-
mension is somewhere in between one and two.

The Koch curve is constructed by a very simple set of
geometric instructions. A brief Google search will reveal
hundreds of other fractals, each with their own simple
definitions. Two categories into which many of these
fractals fall into are complex number fractals and iter-
ated function system (IFS) fractals. While these two
categories do not encompass every fractal in existence,
they do contain many of the most widely known frac-
tals. This report will focus on the parallel calculation of
paradigm examples of each of these two categories. The
two fractals chosen for this purpose are the Mandelbrot



2

set and Seirpinski’s triangle.
The Mandelbrot set is probably the most widely known

complex number fractal. A complex number fractal is
generated by performing an iterative operation on points
in the complex plane. Images of these fractals are then
generated by treating each point as a pixel and coloring
it according to the result of the iterative operation. The
Mandelbrot set is generated by the following recursive
formula:

zn+1 = z

2
n + c (1)

For each point c in the complex plane, Equation 1 is
applied recursively starting with z = 0, and if z remains
bounded, the point c is determined to be part of the Man-
delbrot set. It can be shown that if |z| � 2, the point
will diverge [3]. Thus, if at any point in the iteration
|z| exceeds this value, there is no longer any reason to
continue. If the purpose is to generate an awe inspiring
image however, simply coloring pixels depending upon
whether or not they diverge will produce a rather dull
result. For this reason, points are typically colored based
on how many iterations it takes for |z| to exceed 2, giving
some information about how quickly each point diverges.
Points that do not diverge within the maximum number
of iterations are colored black and are determined to be
part of the Mandelbrot set. A maximum number of iter-
ations must be chosen and will determine the accuracy of
the generated image. For example, a point may diverge
very slowly, and if the number of iterations performed is
too low, the point will be mistakenly identified as part of
the set. The number of iterations necessary to produce
an accurate image depends strongly on the magnification
of the image. The Mandelbrot set can be seen in Figure 2
at various magnifications showing the fine structure and
self similarity at increasing magnifications. The e↵ect of
the maximum number of iterations can be seen in Fig-
ure 3.

Complex number fractals like the Mandelbrot set lend
very nicely to parallelization due to the fact that each
point’s orbit is independent of any other’s. Instead of
looping through columns and rows of pixels, and per-
forming the above iteration for one pixel at a time, a
batch of pixels could be spread across as many compute
units as are available, with each compute unit calculating
the orbit of a point or group of points. As can be seen in
Figure 2, the complexity of the image grows as the mag-
nification becomes larger. This poses a problem when
the scale of the image is comparable to the precision of
the machine. This can be especially significant for GPU
calculations where double precision floating point values
are typically not available on all but the most expensive
models.

Where complex number fractals perform an iterative
function on all points of interest, IFS fractals repeatedly
transform a single point, and plot its position after each
transformation. The initial point is chosen at random
on a bi-unit square. This process is made more inter-
esting by what is known as the “chaos game.” This is

FIG. 2: Mandelbrot set at various magnifications.
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FIG. 3: Mandelbrot set with various maximum numbers of
iterations.

carried out by selecting a transform at random, from a
list of transforms with set probabilities, for each itera-
tion. One of the most famous examples of this is Seirpin-
ski’s triangle shown in Figure 4. To generate Seirpinski’s
triangle, one chooses three points as the vertices of the
outer triangle. Three transformations are then created
that transform any random point to the halfway mark
between the original location and one of the three ver-
tices. For instance, if the three points chosen are (0,0),
(1,0), and (0,1) as in Figure 4, the three transformations
will be:

✓
xn+1

yn+1

◆
= 0.5

✓
xn

yn

◆
(2)

✓
xn+1

yn+1

◆
= 0.5

✓
xn

yn

◆
+

✓
0.5
0.0

◆
(3)

✓
xn+1

yn+1

◆
= 0.5

✓
xn

yn

◆
+

✓
0.0
0.5

◆
(4)

where each transformation is chosen with equal probabil-
ity. Color can be added as in Figure 4 by associating a
color with each transformation, and coloring each point
depending upon which transformation the pixel was a re-
sult of. Clearly, Seirpinski’s triangle has perfect self sim-
ilarity and fine structure at all scales. The fractal dimen-
sion of Seirpinski’s triangle is 1.5829 [2] which is between
one and two as expected for a set of infinite connected
points which does not fill the area that it is enclosed in.
The quality of the image of an IFS fractal is determined
by the resolution and number of points plotted where a
finer resolution requires more plotted points.

FIG. 4: Seirpinski’s triangle.
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II. GPU PARALLEL CALCULATION

As advancements in hardware development produced
faster and faster CPU’s, it was realized that this increase
would not be without limit. Serious impediments loomed
in the horizon which included the absolute limit on trans-
mission speed, the size limit of components, and the over-
all increasing cost of making CPU’s faster [4]. The obvi-
ous solution was to ditch quality and focus on quantity.
Why not find a way to run on more than just a single
CPU? At the time, parallelizing programs written in C,
C++, and FORTRAN was very complicated, and de-
pended upon interfaces provided by operating systems.
Newer standards such as the Message Passing Interface
(MPI) and OpenMP for multi-core CPU’s, solved this
problem by allowing programmers to easily write codes
that could run on multiple processing units at once. The
two primary methods of code parallelization are data par-
allelism and task parallelism. Data parallelism is where
groups of a large set of data, such as a matrix, are sent
to di↵erent processing units and each group undergoes
the same operation. For the purpose of parallelizing the
computation of fractals, this is the type of parallelization
that will be utilized. Task parallelism on the other hand
is where di↵erent tasks are performed at the same time.

Eventually, it was realized that GPU’s could be used to
speed up data parallelization algorithms. This is because
GPU’s consist of hundreds of cores that are designed to
perform the same task on large numbers of pixels. While
there are certainly some things that GPU’s cannot do,
repetitive mathematics is not one of them. While the
potential to use GPU’s for more than simply graphics
was realized, it took the development of the OpenCL
and CUDA platforms to take full advantage of this po-
tential. Typically, OpenGL was used to program GPU’s,
which acted as a one-way pipeline from the host program
to the screen. Although OpenGL has advanced signifi-
cantly alongside OpenCL and CUDA, it remains suited
for graphical applications more so than truly general pur-
pose computing. When deciding between OpenCL and
CUDA, the general perception is that CUDA is easier to
learn, but is limited in that it only works for NVIDIA
GPU’s. OpenCL on the other hand works on AMD and
NVIDIA GPU’s as well as CPU’s made by ATI, IBM,
and Intel. For this reason, this research uses OpenCL.

When deciding how to parallelize the calculation of the
Mandelbrot set, the first inclination was to simply send
each point to a compute unit on the GPU. The kernel
program that the GPU uses is then simply the same as
the code in the inner loop of the serial calculation. Thus,
the kernel is written to receive a single point and per-
form its orbit via Equation 1. If the orbit exceeds the
maximum radius, the loop is stopped and the iteration
number is recorded. A color is assigned to that point
depending upon how many iterations it underwent. One
might naively think that if 1000 compute units are work-
ing in parallel on individual points, there would be a
speed up by a factor of 1000. As usual, things are never

this simple. While a GPU can crunch numbers and per-
form trigonometric operations as fast or faster than a
CPU, it is significantly slower at performing logical oper-
ations and comparisons, such as those existing in typical
flow control statements like loops and branches. Still,
the speed gained by utilizing many cores on the GPU is
expected to make up for this loss in looping e�ciency.
A further gain in speed is realized by utilizing vector

data types. A vector in OpenCL is similar to an array in
C. The biggest di↵erence between the two is that when an
operation is performed on a vector in an OpenCL kernel,
every element of the vector is operated upon at the same
time. While it is not impossible for a CPU to perform
vector operations, built in vector data types do not exist
in C, C++, or FORTRAN; they must be defined by the
user. The other significant di↵erence between a C array
and an OpenCL vector is that the OpenCL vector can
only contain a specific number of bytes. The number of
bytes that a vector can hold is dependent upon the device
being used. Most GPU’s will have a limit of 16 bytes per
vector [5], which equates to four floating point scalars.
This opens up the possibility of operating on four points
at once per compute unit. We now have two strategies
for parallelizing the Mandelbrot set calculation:

Algorithm 1 Scalar Mandelbrot algorithm
get indices for pixel
transform indices to coordinates x and y

c x+ iy

z  0 + 0i
for k = 1 to MaxIterations do

z = z

2 + c

if |z| � 2 then
break out of the loop

end if
end for
store the value of k for pixel coloring

Algorithm 2 Vector Mandelbrot algorithm
get indices for first pixel of group
transform indices to coordinates xj and yj for j = 0, 1, 2, 3
create an integer vector mask of length 4
create an integer vector iter of length 4 set to (0,0,0,0)
cj  xj + iyj

zj  0 + 0i
for k = 1 to MaxIterations do

zj = z

2
j + c

if |zj |  2 then
maskj = 1

else
maskj = 0

end if
iterj = iterj +maskj

if mask = (0,0,0,0) then
break out of the loop

end if
end for
store the values of iter for pixel coloring
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The parallelization of an IFS fractal is much more flex-
ible by comparison. For instance, if the goal is to plot 100
points, one could run ten initial random points for ten it-
erations, or two initial random points for 50 iterations. In
each case, the iterations are performed in parallel on the
GPU. One minor drawback is that when starting with
a random point, the point must undergo a certain num-
ber of unrecorded iterations to allow the system to settle
and begin plotting points that are actually part of the
fractal [6]. Typically this is taken to be 20 iterations;
however if 1000 random points are started, this is 20,000
unrecorded iterations that are not required in the serial
calculation. Di↵erent combinations of random starting
points and numbers of iterations per starting point can
be used to investigate the e↵ect of the parallelization on
the run time. The pseudo code for the generation of Seir-
pinski’s triangle is as follows:

Algorithm 3 Seirpinski algorithm
for each iteration thread:
get random starting point coordinates x and y

for k = 1 to 20 do
s random number (0,1)
if s < 1/3 then

x = (1/2)x
y = (1/2)y

else if s < 2/3 then
x = (1/2)x+ 1/2
y = (1/2)y

else
x = (1/2)x
y = (1/2)y + 1/2

end if
end for
for k = 1 to MaxIterationsPerThread do

s random number (0,1)
if s < 1/3 then

x = (1/2)x
y = (1/2)y
transform x and y to image array indices
plot point in image as color red

else if s < 2/3 then
x = (1/2)x+ 1/2
y = (1/2)y
transform x and y to image array indices
plot point in image as color green

else
x = (1/2)x
y = (1/2)y + 1/2
transform x and y to image array indices
plot point in image as color blue

end if
end for

When parallelizing the calculation of an IFS fractal,
one important question to ask is where are the random
numbers coming from? In order to make a fair compar-
ison between the serial and parallel calculations, both
codes should use the same random number generator
(RNG); however there is no built in RNG in the OpenCL
kernel language, so there are two options:

1. Generate the random numbers within each kernel
as needed by writing a simple function.

2. Generate a bu↵er of random numbers from a proven
RNG in the host C program and send them to the
kernel for use.

The second option introduces a loss in speed due to the
fact that memory transfer between the host program and
the kernel is an added burden that the first option would
not require. For this reason, the first option is chosen
and a simple linear congruential generator (LCG) is im-
plemented due to its high speed and low memory use
[7]. A LCG is defined as a RNG that produces random
numbers according to the following formula:

xn+1 = (axn + c) mod m (5)

The values of a, c, and m are chosen to be the same
as those suggested by Press et al [8]. With a maximum
period of 232, this should work well enough for an IFS
fractal with less than a billion plotted points.

III. RESULTS

This is not the first study comparing a single CPU cal-
culation to a single GPU calculation and it will certainly
not be the last. When performing such a comparison,
one question is typically debated: do you sacrifice e�-
ciency in the serial algorithm for the sake of making the
two codes perform nearly the same exact operations? For
instance, in the serial calculation of the Mandelbrot set,
one could simply adjust the coordinates inside the outer
loops and write the integer iteration values to an output
file for image processing, without storing these values in
large, memory intensive arrays. For the parallel calcu-
lation however, the array is necessary because the GPU
does not have the capability to write the values to file,
and even if it did, many compute units would be trying
to write to the same file at the same time.
For the parallelization of the Mandelbrot set, several

cases are considered to perform the comparison as fairly
as possible. Three separate serial strategies are consid-
ered alongside three separate parallel strategies. The
three serial cases are:

1. Perform the calculation of the integer iteration val-
ues per pixel without the use of arrays. The output
of the code is simply a text file that is plotted with
gnuplot to check that the code is producing the cor-
rect output; however once the output is confirmed,
the code is timed without the data being written
to file, because writing this data to a file is time
consuming and not relevant to the performance of
the code.

2. Perform the calculation of the integer iteration val-
ues per pixel with the use of arrays. Other than
this, the handling of the output is identical to the
first serial case.
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3. Perform the calculation of the integer iteration val-
ues per pixel with the use of arrays, and convert
these integer values to RGB values. Once an array
of RGB values is obtained, an output file is written
in binary .bmp format, which is significantly faster
than writing a text file, and eliminates the need for
any external plotting capabilities.

The three parallel cases are:

1. Perform the calculation of the integer iteration val-
ues per pixel with the use of arrays, calculating the
orbit of a single point per kernel. Once again, the
output of the code is simply a text file plotted with
gnuplot only to check that the code is producing
the correct results. The code is then timed with no
output being generated.

2. Perform the calculation of the integer iteration val-
ues per pixel with the use of arrays, calculating the
orbit of a single point per kernel, and convert these
integer values to RGB values. Once an array of
RGB values is obtained, an output file is written in
binary .bmp format.

3. Perform the calculation of the integer iteration val-
ues per pixel with the use of arrays, calculating the
orbit of four points per kernel. Other than this,
the handling of the output is identical to the first
parallel case.

The use of these six cases should provide quite a fair com-
parison. A comparison between serial case 2 and parallel
case 1 or serial case 3 and parallel case 2 shows the dif-
ference in speed between a single CPU and a single GPU
performing the same exact operations, whereas a compar-
ison between serial case 1 and parallel case 3 shows the
di↵erence in speed between the most economical meth-
ods in each category. The run time of each case given
above is shown in Table I. For each case considered, the
time reported in Table I is the real time required to cal-
culate the Mandelbrot set of resolution 2048 ⇥ 2048 with
a maximum of 3000 iterations, with or without output,
depending on the case. All reported run times in this
report are the averages of the run times for a sample of
five identical runs.

TABLE I: Run times for the six Mandelbrot set cases consid-
ered.

The parallelization of the IFS fractal provides much
more flexibility. Unfortunately, the IFS fractal is not
quite as easy to parallelize because of the added data

that must be transferred from the host program to the
kernel. For this reason, the speed up factor is expected
to be less significant than for the complex number fractal
which only needs an image bu↵er to write its values to.
To parallelize the IFS fractal, a batch of random starting
points and random seeds are produced, and each kernel
code receives one element of each batch, along with the
number of batches being run. The total number of points
plotted is then divided by the number of batches, and
the kernel performs the resulting number of iterations.
For instance, if a total of 100,000,000 points are plotted
with 100 batches, a set of 100 random starting points are
generated along with 100 random number seeds, and each
kernel performs 1,000,000 iterations from its own starting
point. The ratio of the run times for the serial to the
parallel calculations is given in Figure 5. All run times
presented for the IFS fractal generation used a resolution
of 2048 ⇥ 2048.

FIG. 5: Ratio of serial to parallel run times as a function of
the number of batches.

Up to this point, all of the data presented has been
generated using an AMD Radeon HD 6770M GPU. It
would be interesting to compare these results to those
generated using a di↵erent GPU. The second GPU cho-
sen for this purpose is a ATI Mobility Radeon HD 5870.
A comparison of the specifications for these two GPU’s
it given in Table II. As can be seen in Table II, The
two GPU’s are of comparable quality with the most sig-
nificant di↵erence being the number of processing units
in each. Although the 5870 is from an older generation
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of the same manufacturer, it is also from a higher class
within that generation, and therefore still outperforms
the 6770M.

TABLE II: Comparison of specifications for the two GPU’s
used. Values courtesy of game-debate.com [9].

A comparison of the performance of each of these
GPU’s can be seen in Figure 6 where the ratios of se-
rial to parallel run times are plotted as a function of the
number of batches used in the IFS fractal generation. In
this figure, the number of plotted points is 400,000,000.
The vertical lines in the figure are the number of pro-
cessing units for each GPU, and seem to line up with the
local minimum of each set of data.

FIG. 6: Run time ratio comparison for the two GPU’s con-
sidered.

IV. SUMMARY AND CONCLUSIONS

When deciding how to parallelize an algorithm, the
programmer must identify whether the algorithm is best

suited for data parallelism or task parallelism. In the case
of data parallel algorithms, such as the calculation and
generation of fractals, the repetitive calculations should
be performed on a GPU if possible. This is supported by
the overall speed up factor of 36.48 for the Mandelbrot set
and 4.44 for Seirpinski’s triangle. In addition, these speed
up factors were found for GPU’s that are no where near
top of the line by today’s standards. It is not uncommon
for a modern GPU to have over 2,000 processing units
and significantly more memory. For instance, the top of
the line GPU from AMD to date is the AMD Radeon HD
8970 which has 2048 processing units along with 3 GB of
memory and a 1 GHz clock speed [10].

When examining Figure 6, it may seem strange that
the run time decreases slightly as the number of batches
approaches the number of processing elements on the
GPU. One would naively think that if all of the process-
ing units are in use, the GPU is being used to its fullest
extent, and hence most e�ciently. However, since both
GPU’s have the same memory and comparable mem-
ory speeds, the dip is most likely due to the exorbitant
amount of data being handled by the GPU when all cores
are being used. More batches means longer starting point
arrays and longer random number seed arrays for the
GPU to store in its global memory.

While IFS fractals allow the programmer to experi-
ment more with the parallelization of the algorithm, it
is clear that complex number fractals are likely to have
much more significant speed up factors when using the
GPU. This is because they require less memory trans-
fer between the host program and the GPU, but also
because the loops performed on the GPU can be signifi-
cantly shorter than those needed for the IFS fractal. Of
course, this statement will not always be true, depending
upon the length scale of the complex number fractal and
the number of points plotted in the IFS fractal; however
in many cases complex number fractals can be generated
accurately using a maximum number of iterations in the
thousands, whereas the IFS fractal may require a million
or even a billion points to be plotted depending upon the
resolution of the image.
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In this work, I study the finding the minimum of function f(x) = 11 sin(6x) + 7 cos(5x) in range

of (0, 2⇤⇡) by using genetic algorithms. Previous studies at class we learned several ways to find the

minimum number of a function. The advantage of using genetic algorithms than other optimizations

is that it can easily find the minimum number in the whole range rather than tracked in part of the

range.

I. INTRODUCTION

In the computer science field of artificial intelligence,
genetic algorithm (GA) is a search heuristic that mim-
ics the process of natural selection. This heuristic (also
sometimes called a metaheuristic) is routinely used to
generate useful solutions to optimization and search
problems.[1] Genetic algorithms belong to the larger class
of evolutionary algorithms (EA), which generate solu-
tions to optimization problems using techniques inspired
by natural evolution. In nature, a group contains amount
of individuals which have their own gene. The individuals
which contain the gene can suit the environment better
will have more chance to survive and create next gener-
ation. When the better individuals give the good gene
to their babies, mutation and crossover will happens. In
this program, we will simulate what happens in nature
and using this way to do optimization.

II. MODEL

In general, if we want to using GA to do optimization,
we should follow several steps. Firstly, make sure what
you are going to optimize and abstract a mathematics
model; Secondly, change the parameters in the model
into chromosomal which contains all the information of
one individual’s gene; Thirdly, create the first generation
of a group; Fourthly, evaluate new generations with selec-
tion, crossover and mutation for around 50 generations;
Finally, get the answer and make a check, and adjust
your code to see if can make it better. In this time, I will
use GA trying to find the minimum number of function
1 in range of(0, 2Pi).

f(x) = 11 sin(6x) + 7 cos(5x) (1)

I tried to us Mathematica to plot this function, and it
is showed by the picture. And find minimum value of the
function related to x equals to 1.8486. We can use this
solution to check if GA can optimize it well.

For the fist step, it is already a easy model which com-
puter can deal with.

For the second step, I separate the range of 2⇡ to 2D

parts and using binary numbers like from 0 000 000 000
000 000 to 1 111 111 111 111 111 to represent of them.
So that they can be write in the form of chromosomal.

      Start 

 

 

 

 

 

 

 

 

 

 

 

                                                                 Crossover 

                                                                 mutation 

Start 
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Select parents 

Next generation 

If done? 

Print out 

FIG. 1: GA

For the third step, I create a three-dimensional array
x[T][M][D], which T is the number of generations, M(to
be convenient of the rest calculation, I choose M is even)
is the number of the individuals. When T=0, it present
the first generation, and for each individual, I using ran-
dom number generator to create random number of 0 and
1, and then put them into first generation a[0][M][16] one
by one. Then the first generation was created.

For the forth step, the most important part is how to
select.

1.Firstly we need to find out how to determine which
individual is better than others, and the way to do it is
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FIG. 2: original function

to found a fitness function to measure each individuals,
just to make sure that the bigger the answer you get from
the fitness function, the better the individual is. In my
case, firstly I change the 16 digits ’chromosomal’ to the
x in 1 by using 2,

x =
D�1X

i=0

xi · 2i (2)

then I set fit function as 3.

fit(x) = 18� 11 sin(6x)� cos(5x) (3)

2. Principal the better individuals are, the more chance
they would be parents to generate next generation. Using
a good way to select parents can save your time to get
the answer you want. Usually, the the probability to be
chosen is proportional to the value of fitness function like
4.

Pi = fit(xi)/
X

fit(xi) (4)

Since this problem I am trying to solve is easy, I choose
a simple way to deal with this: every time before creat-
ing a new generation, I using bubble sorb to sorb the old
generation according the answer of fitness function, then
I give up some of the worst individuals and then pick the
couples randomly in the rest with equal probability, and
at end I copy the top two individuals’ chromosomal in
the old generation directly (this way is Hybrid Genetic
Algorithm which can accelerate to close to the optimal-
ity).

3.for the crossover part, it is easy to achieve. After
picking a couple, get a random number in range of 1 to
16 to determine the point to cross. it showed in picture

FIG. 3: example for crossover

1 I randomly get two number, and cross over the chro-
mosomal between them, and I thought this way can be
better which was wrong.
4. After cross over to generate a new generation, you

still need to make mutation on them. To do this, you
need to set a probability of mutation. Here is my code
and I set a function for mutation called mut(i, a[][][D]).
For the last step, I try to do some adjust some param-

eter and some change of the code to see how the progress
will changed. In first time I running the code, I set num-
ber of individuals as 1000, D=16 and p=0.06, and I print
out the best individual of each generate. The program is
solved immediately, and it gets the exact answer. So GA
do can solve this problem well and with little time.

Let us try to do further research of GA, so we can
understand it better.
1. How to choose the parameter D? I think it at least

depends on two things.The first thing you should consider
is the form of the fitness function. If the fitness function is
”sensitive” to the change of x which means if you change
x a little, the value of the function changes a lot, you
need to set a large D. It is easy to understand. Because
the number you find will have a little di↵erence with the
exact value, and from 5 (A is the range of x)

error

max

=
A

2D
(5)

the error is in range of [0,error], if the function is sensi-
tive in the area near the minimum values part, this small
error can cause a big di↵erence in related function value.
So if this things happen, you need to make D lager to
reduce the error; Another thing determines the value of
D is how many significant digits you want. Like in this
problem I solve, when D equals 16, from 5 the maximum
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FIG. 4: 2

error is 0.0055, so the significant digits is 4. If you need
more significant digits, then you need to set D bigger
until the maximum error is smaller than the digits you
need. But for some problems, D is already setted, like
traveling salesman problems, D should equal to the num-
bers of cities. 2.How to choose a proper parameter M?
These fact we can conclude that the number of individu-
als you choose can’t be very small, otherwise it can’t find
the right answer; And also it not necessary to be very
big, if so it will need to run a long time when solving a
hard problem. So choose a proper M is important. And
what should you consider when you are trying to set M?
I think there are at least two things you need to consider.
One is the function’s form, in fact in general, should be
the fitness function’s form, if it has a lot of partial op-
timized points, then you need plenty of individuals, on
the contrary, if your function don’t have many partial
points optimized points, you don’t need to set a lot of
individuals. I think this is not hard to understand, like
if you choose small group of the first generation, some-
times they would separate like this, and it will hard for
them to approximate to the minimum number. So seems
the more peaks the function have, the more individuals
are needed. I run this program several times with M as
1000, D as 16 and p=00.6, and every time it can get the
same answer and the final value show up in around 16
generation. It seems the number of individuals may be
too much for this problem. So I reduce the number of
individuals from 1000 to 500, and it still can find the ex-
act answer in few generations. Then I set M as 100, then
sometimes I even can’t get the exact solution but a num-
ber close to the real answer. Later, I tried 30, and the
final answer trapped in 0.7335 which the related value
of function 1 is not the minimum number in the whole
range but a partial minimum number.

Is there have a chance that I set a small M, but make a
big number of generations? Then I set M equals 20, and
run it for 500 generations, and I got a plot. The answer in
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FIG. 5: I set di↵erent M, and plot the best individual’s value

change with the number of generation
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in 50th generation

500 generation is same with it in 100th genenration, but
to make the begining visible, I only plot 100 generations.
And we can see that it is trapped and hard to go to the
right value in big number genenrations. The other thing
you should consider is how many parts you divide the
range to, in other wordz, it depends on the D you set, if D
get larger, then the number of individuals also should be
more. To prove this, I change D to 25 and set M as 1000,
then I find that it always can’t find the right answer in 50
generations. 3.How to choose the number of generations
T? In fact, it is releated to parameter M, If you set a
small M, then you need to evolve many generations to
get the final answer. Of course it can’t be too small,
otherwise it asks for a huge number of individuals, which
is not neccessary. But we also can’t set it too big and set
M small, cause then it will be hard for you to distinguish



4

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 20  40  60  80  100
generation

M=500
exact value

FIG. 7: set M=20, and make more generations

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

FIG. 8: New function

if you get a right answer, like the example above, I set M
equals to 20 and evolve for 500 generations, and I get the
same value for over 400 generations, you might think it
is the final answer, but the fact is it is wrong. So usually
we set T around 50. But notice that some problems do
need a big number of T, and it can’t be solved in few
generation, like traveling salesman problem.

To prove what I find above are right, I will use them
to predict another finding minimum problem. If the pre-
diction are right with the fact, then it means what I find
is right. I will try to find the minimum of function 6 in
range of (0,1). And the minimum number is x equals 0.5.

f(x) = 10|x� 0.5|� cos(100(x� 0.5)) + 1 (6)

I know the plot of the fuction is and the number of peaks

is almost same to the front one. First, I can still set D as
16; Second, the range of new function is almost 6 times
smaller than the front one, but I set the same D, so I
predict that the number of individuals M can be several
times smaller than it in front one, like set M equals 20
can still get the right answer And I make a plot of this;
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FIG. 9: Change M of new function

Third, I set T as 50. The plot are exact same with my
prediction. So my views above seems are right.

III. SUMMARY AND CONCLUSIONS

Genetic Algorithms do can solve optimizations, and
can solve some problems well. It has some advantages
than other algorithms. Like we can make it parallel to
save the running time; also, it can find peak without
knowing the derivative of the function, so it can solve
some optimize problem in life not only in mathematics
field.
But we can see there are some limit for GA, like it

related to the number of parameters which can’t be found
exactly, also, if using GA to solve problems have di�cult
fitness functions like have a lot of partial peaks, then you
need to set a big number of individuals which can make
the program run slow, like Traveling Sales Man problem.
And sometimes it will be di�cult to make a chromosomal
or abstract a fitness function.
So usually when we use GA to solve some di�cult prob-

lems, we usually add some algorithms to GA or combine
them together to speed it up. And people already de-
veloped a lot of algorithms based on GA so that it can
solve some special problems quickly like Hybrid Genetic
Algorithms.
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We used the Variational Quantum Monte Carlo methods to find the ground state energy of several

systems, including the 1D harmonic oscillator, 3D harmonic oscillator, hydrogen atom, helium atom,

hydrogen molecule, and trihydrogen cation. The values we got in our experiments agree with the

theoretical ones very well.

I. INTRODUCTION

A. The variational theorem

Quantum mechanical systems of particles can be de-
scribed by the time-dependent Schrödinger equation

i~ @
@t
 = Ĥ (1)

For stationary states where the Hamiltonian is not depen-
dent on time, we have the time-independent Schrödinger
equation

Ĥ = E (2)

where the Hamiltonian is

Ĥ = � ~2
2m

r2 + V (x) (3)

Exact solutions have been found only for a very small
number of problems which can essentially be reduced to
one-dimensional ordinary di↵erential equations. Good
examples include the 1-D and 3-D quantum harmonic
oscillator, as well as the hydrogen atom which consists of
a proton and an electron interacting through a Coulomb
force. For most quantum systems which involve more
than two particles, i.e., atomic nuclei and electrons, nu-
merical methods must be used.

For a sytem, the eigenfuctions which can describe the
system are  n(x). If they are complete, then any wave-
function  (x) can be expressed as a linear superposition
of these eigenfunctions

 (x) =
X

n

cn n(x) (4)

where cn are any complex numbers. The energy corre-
sponding to this wavefunction is

E =

´
 ⇤(x)Ĥ (x)dx´
 ⇤(x) (x)dx

(5)

According to the variational theorem, E > Eground,
where Eground is the ground state energy of the system.
The equal sign “=” holds if and only if  (x) = c0 0,
where  0 is the eigenfunction of the ground state.

Given the variational theorem, in order to compute the
ground state energy of a sytem, we can guess a general

wavefunction which contains some parameters. Then, we
calculate the energy corresponding to that wave function,
and the energy is also a function of the parameters in
the wavefunction. Next, we can vary the parameters to
minimize the energy, which will give us a good upper
bound of the exact ground state energy.

B. Variational Monte Carlo (VMC)

In the Variational Monte Carlo method, we choose a
wave function  (x) depending a set of parameters, ↵ =
{↵1,↵2, . . . ,↵m}. We calculate the energy according to

E =

´
 ⇤(x)Ĥ (x)dx´
 ⇤(x) (x)dx

using the Hamiltonian of the system, Ĥ. In order to
compute the multi-dimensional integrals in this formula
e�ciently, Monte Carlo methods will be used. We will use
the Metropolis algorithm to sample the important regions
of the multi-dimensional space. In the VMC method, the
distribution of our sample points is

⇢(x) =
| (x)|2´

 ⇤(x) (x)dx
(6)

Then, the energy is

E =

´
 ⇤(x)Ĥ (x)dx´
 ⇤(x) (x)dx

=

´
| (x)|2 Ĥ (x)

 (x) dx´
 ⇤(x) (x)dx

⌘
ˆ

dx⇢(x)EL(x) (7)

where

EL(x) =
Ĥ (x)

 (x)
(8)

is called “local energy”. The wavefunction  (x) can gen-
erally be chosen to be real and positive definite when
evaluating the ground state energy.
The VMC strategy is to choose a set of random points,

{x1,x2, . . . ,xM}, in the configuration space acoording to
the distribution function ⇢(x), and evaluate EL. The
estimated ground state energy will be

E =
1

M

MX

i

EL(x) (9)
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II. MODEL

A. VMC for the Harmonic Oscillator

We consider the 1-D harmonic oscillator first, as it
is the simplest quantum mechanical system of particles
which has bound states. The Hamiltonian operator for a
1-D harmonic oscillator is

Ĥ = � ~2
2m

d2

dx2
+

1

2
m!2x2 (10)

Choosing units such that m = 1, ~ = 1, and ! = 1, the
Hamiltonian in theses units is

Ĥ = �1

2

d2

dx2
+

1

2
x2 (11)

Using a simple variational trial function  (x) = e�↵x2

,
the local energy is calculated as

EL(x) = ↵+ x2(
1

2
� 2↵2) (12)

The distribution function ⇢(x) ⇠ e�2↵x2

. It can be seen
that when ↵ = 0.5, the exact ground state energy is
reached.

As FIG. 1 shows, after executing the program, we find
that when ↵ = 0.5, we arrive at the minimal energy,
0.5, with the minimal error, 0. This is the same as the
exact result, which means the trial function we choose is
exactly the eigenfunction of the ground state.

Then, we consider the 3-D harmonic oscillator. The
Hamiltonian is

Ĥ = � d2

dx2
+

1

2
x2 � d2

dy2
+

1

2
y2 � d2

dz2
+

1

2
z2 (13)

Using the trial function as a product of the wave func-
tions of the three coordinates,  (x) = e�↵(x2+y2+z2), the
local energy is

EL(x) = 3↵+ r2(
1

2
� 2↵2) (14)

where r =
p

x2 + y2 + z2. The distribution function

⇢(x) ⇠ e�2↵r2 . It can be seen that when ↵ = 0.5, the
exact ground state energy is reached.

As FIG. 2 shows, after executing the program, we find
that when ↵ = 0.5, we arrive at the minimal energy, 1.5,
with the minimal error, 0. This is the same as the exact
result.

B. VMC for the Hydrogen Atom

The Hamiltonian operator for the hydrogen atom is

H = � ~2
2m

r2 � ke2

r
(15)
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FIG. 1: E and Eerror as a function of ↵ for the 1-D harmonic

oscillator

Using atomic units, namely, Bohr radius

a0 =
~2

mke2
= 0.529

�
A

Ground Energy of two independent hydrongen atom,
which is also known as one hartree

E =
ke2

a0
= 27.2eV

to rewrite the Hamiltonian

H = �1

2
r2 � 1

r
(16)

As the hydrogen atom is spherically symmetric, if we
write H using spherical coordinates, only the radial part
of H will remain:

H = �1

2

✓
d2

dr2
+

2

r

d

dr

◆
� 1

r
(17)

Using the trial function is  (x) = e�↵r , the local
energy is

EL(x) = �1

2

✓
↵2 � 2↵

r

◆
� 1

r
(18)
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And the distribution function ⇢(x) ⇠ e�2↵r2 . It can be
calculated that when ↵ = 1, the exact ground state en-
ergy is reached.

As FIG. 3 shows, after executing the program, we find
that when ↵ = 1, we arrive at the minimal energy, �0.5,
with the minimal error, 0. This is the same as the exact
result.

C. VMC for Helium Atom

1. Hamiltonian and Trial Wave Function

The Hamiltonian operator for the helium atom is

H = � ~2
2m

(52
1 +52

2)�
2ke2

|�!r1 ��!
R |

� 2ke2

|�!r2 ��!
R |

+
ke2

|�!r1 ��!r2 |
(19)

Assuming the nucleus is at the origin, and use atomic
units to write Hamiltonian
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FIG. 3: E and Eerror as a function of ↵ for the hydrogen

atom

H = �1

2
(r2

1 +r2
2)�

2

r1
� 2

r2
+

1

r12
(20)

where r1 = |�!r1 |, r2 = |�!r2 |, and r12 = |�!r1 ��!r2 |.
To construct the trial wave function, we use the Pade-

Jastrow wave function

 (�!r1 ,�!r2) = �(r1)�(r2) (
�!r1 ,�!r2) (21)

where �(r1) and �(r2) are the wavefunctions of the elec-
tron in a hydrogen-like atom,

�(r1) ⇠ e�2r1 , �(r2) ⇠ e�2r2

And

 (�!r1 ,�!r2) = exp


r12

2(1 + ↵r12)

�
(22)

incorporates the interacion of two electrons. Here, ↵ is
the variational parameter.
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Local energy is calculated as

EL(
�!r1 ,�!r2) = �4 +

↵

1 + ↵r12
+

↵

(1 + ↵r12)2
+

↵

(1 + ↵r12)3

� 1

4(1 + ↵r12)4
+

ˆr12 ⇧ (r̂1 � r̂2)

(1 + ↵r12)2
(23)

2. Result Analysis

The experimental value is 2.903[1]. In our computa-
tion, when ↵ = 0.44, the energy achieves its minimum,
-2.898, with Eerror 0.003, as shown in FIG. 4.
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FIG. 4: E and Eerror as a function of ↵ for the helium atom

Our experimental value is close to the theoretical one,
with deviation

|(�2.898)� (�2.903)|
|� 2.903| = 0.2%
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FIG. 5: Set � = 0.618, E and �(E) with di↵erence s

D. VMC for Hydrogen Molecule

1. Hamiltonian and Trial Wave Function

Born-Openhiemer approximation is taken to assume
that the nuclear motion is negligible, and the two nuclei
are symmetrically located on the X axis at (±s/2, 0, 0).
The Hydrogen molecule consisits of two protons and two
electrons, thus there are three parts that contribute to
the Hamiltonian.
Two kinetic energy items for elctron motion;
Four electron-proton items of attrative electronsatic

potential;
Two electron-electron, proton-proton items of attrative

electronsatic potential.

H = � ~2
2m

(52
1 +52

2)� [
ke2

|�!r1 ��!
R1|

+
ke2

|�!r1 ��!
R2|

+
ke2

|�!r2 ��!
R1|

+
ke2

|�!r2 ��!
R2|

]

+
ke2

|�!r1 ��!r2 |
+

ke2

|�!R1 �
�!
R2|

(24)
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Use atomic units to write Hamiltonian

H = �1

2
(r2

1 +r2
2)� [

1

r1L
+

1

r1R

+
1

r2L
+

1

r2R
] +

1

r12
+

1

R12
(25)

where

r1L = |�!r1 ��!
R1| r1R = |�!r1 ��!

R2|
r2L = |�!r2 ��!

R1| r2R = |�!r2 ��!
R2|

r12 = |�!r1 ��!r2 | R12 = |�!R1 �
�!
R2|

We use a general form of multiparticles wavefunction

 (�!r1 ,�!r2) = �(r1)�(r2) (
�!r1 ,�!r2) (26)

It is constructed by combining wave function of Hydrogen
Atom

�(r1) = �1L + �1R = e�r1L/a + e�r1R/a

�(r2) = �2L + �2R = e�r2L/a + e�r2R/a

and the Jastrow function

 (�!r1 ,�!r2) = exp


r12

↵(1 + �r12)

�
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FIG. 7: E and �(E) with optimized a = 0.8414, � = 0.606

There are four parameters in the Hamiltonian and
wave function, a, ↵, �, and the distance of two protons s.
a describes the electron-proton item as single hydrogen
atom, ↵ and � stand for the electron-electron interaction,
and s is the distance of two protons. Two of them can
be expressed by others after applying the Coulomb cusp
conditions

a(1 + e�s/a) = 1,↵ = 2 (27)

The conditions above are model-specific, and can remove
singularities in local energy. After applying the condi-
tions, the local energy is now

✏ =
1

s
� 1

a2
+

1

a�1

✓
�1L
r1L

+
�1R
r1R

◆
+

1

a�2

✓
�2L
r2L

+
�2R
r2R

◆

�


1

r1L
+

1

r1R
+

1

r2L
+

1

r2R

�
+

1

r12

�4(1 + �r12) + r12
4(1 + �r12)4r12

+ (
�1Lr̂1L + �1Rr̂1R

�1

��2Lr̂2L + �2Rr̂2R
�2

) · r̂12
2a(1 + �r12)2

(28)

Now we can use VMC method to optimize the param-
eters and wave function.
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2. Result Analysis

A good result can be found in the reference[2]. The
energy of Hydrogen molecules is �1.1640239± 9⇥ 10�7

hartrees, the distance of two nuclei is about 1.40 a0.
The result of our code is close to this region, with

E0 ⇠ �1.151017 ± 0.000007, s ⇠ 1.404028, for total
108 Monte Carlo sweeps. The deviation of ground state
energy is

|(�1.151017)� (1.1640239)|
|1.1640239| = 1%

and the deviation of the bonding distance is

|1.404� 1.4011|
|1.40| = 0.8%

Our calculation give a very good approximation of the
theoretical values.

The following figures show the energy and standard
deviation of the molecule while searching one parameter
with the other one fixed.

As FIG. 5 and FIG. 6 show, it’s clear that the E and
�(E) are sensitive to proton distance s, which can be
explained by the large ratio of proton-proton energy.

However, the parameter � in Jastrow exponential fac-
tor has an implicit e↵ect on the results, suggesting that
the behavior of electrons should be carefully tuned to
approach more precise results.

Better results can be reached by increasing Monte
Carlo iteration times and using smaller parameter steps,
which is shown in FIG. 7. The error can be reduced to
10�4 by performing 106 iterations.

E. VMC for Trihydrogen Cation (H+
3 )

1. Hamiltonian and Trial Wave Function

Again, we assume that the nuclear motion is negligi-
ble. According to the literature, the arrangement of the
hydrogen atoms in the molecule is an equilateral trian-
gle[3]. Thus, we assume that the three nuclei are located

at (� s
2 , 0, 0), (

s
2 , 0, 0), and (0,

p
3
2 s, 0).

The Hamiltonian for the trihydrogen cation in atomic
units is

H = �1

2
(52

1 +52
2)� [

1

r1L
+

1

r1R
+

1

r1U

+
1

r2L
+

1

r2R
+

1

r2U
] +

1

r12
+

3

R12
(29)

We use the trial function

 (�!r1 ,�!r2) = �(r1)�(r2) (
�!r1 ,�!r2) (30)
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FIG. 8: Set a = 0.808, E and �(E) with di↵erence �

where

�(r1) = �1L + �1R + �1U

= e�r1L/a + e�r1R/a + e�r1U/a

�(r2) = �2L + �2R + �2U

= e�r2L/a + e�r2R/a + e�r2U/a

and the Jastrow function

 (�!r1 ,�!r2) = exp


r12

↵(1 + �r12)

�

The Coulomb cusp conditions for this model are derived
as

a(1 + 2e�s/a) = 1, ↵ = 2 (31)

Note that there is a “2” factor here in the first condition
compared to that of the hydrogen molecule. Local energy
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FIG. 9: Set � = 1.19, E and �(E) with di↵erent a

becomes

✏ =
3

s
� 1

a2
+

1

a�1

✓
�1L
r1L

+
�1R
r1R

+
�1U
r1U

◆
+

1

a�2
(
�2L
r2L

+
�2R
r2R

+
�2U
r2U

)� [
1

r1L
+

1

r1R
+

1

r1U
+

1

r2L
+

1

r2R

+
1

r2U
] +

1

r12
� 4(1 + �r12) + r12

4(1 + �r12)4r12

+(
�1Lr̂1L + �1Rr̂1R + �1U r̂1U

�1

��2Lr̂2L + �2Rr̂2R + �2U r̂2U
�2

)

· r̂12
2a(1 + �r12)2

(32)

2. Result Analysis

The theoretical value of the ground state energy is -
33.42 eV (-1.228676 hartrees), with the nucleus-nucleus
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FIG. 10: E and �(E) with optimized a = 0.811, � = 1.19

distance 0.9
�
A (1.701323 a0)[3].

The result of our code is close to this region, with E0 ⇠
�1.25618 ± 0.00001, s ⇠ 1.743, for total 108 Monte
Carlo sweeps. The deviation of ground state energy is

|(�1.25618)� (�1.228676)|
|� 1.228676| = 2%

and the deviation of the bonding distance is

|1.743� 1.701323|
|1.701323| = 2%

Our calculation give a very good approximation of the
theoretical values.
The following figures show the energy and standard

deviation of the molecule while searching one parameter
with the other one fixed.
As FIG. 8 and FIG. 9 show, we get the similar results

compared to those of hydrogen molecule. E and �(E) are
sensitive to a, which corresponds to the nuclear-nuclear
distance s. The parameter � has an implicit e↵ect on the
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results, suggesting that the behavior of electrons should
be carefully tuned to approach more precise results.

Better results can be reached by increasing Monte
Carlo iteration times and using smaller parameter steps,
which is shown in FIG. 10. The error can be reduced to
10�4 by performing 106 iterations.

III. SUMMARY AND CONCLUSIONS

The values of the minimal energy of several systems
such as the 1D harmonic oscillator, 3D harmonic oscil-
lator, hydrogen atom, helium atom, hydrogen molecule,
and trihydrogen cation, agree with the theoretical ones
very well.

However, error exists for our model, as seen in ev-
ery system above. In order to reduce the error and im-
prove the precision of the results, considering the possible
source of the error, we propose three ways:

1. Use better trial wavefunction. In our model, for
a multiparticle system, we use a Jastrow trial wave-
function. There may be some other wavefunction which
agrees with the real one better.

2. Search parameters more precisely. In our model,
the precision of the parameters is 10�3, which may be

not small enough.
3. Average over more Monte Carlo sweeps. The error is

proportional to 1/
p
N , where N is the number of Monte

Carlo sweeps. More sweeps, smaller error. N = 106 in
our case, which may be not big enough.
Despite of the error, our results are close to the theo-

retical ones remarkably.
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APPENDIX

A. VMC Flowchart

The implementation of VMC alogrithm can be instructed by the following flowchart.

Take%Trial%Steps%

Get%Probability%%

Get%Energy,%
Update%E%

Importance%
Sampling%

Output%Energy%

Yes%

Reject%

Ini@alize%

Update%States%

Accept%

Itera@on%
n%>%Nt%?%

No%

Input%
Parameters%

VMC,%Update%
Op@mized%Sets%

Out%of%
Range?%

Output%
Op@mized%
Parameters%

Yes%

No%

VMC VMC 
Searching 

FIG. 1: Flowchart of the MC main program
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B. VMC Main Codes

The main code of VMC in C programming language.

/* Important Global Virables */
int M = 1; // M Makov chains
double T = 1.0; // Teperature
int Nt = 1000; // Nt Monte Carlo sweeps
int Nskip = 1000; // Sweep Nskip steps to get thermal equibilium

#define Nw 10 // Nw independent random walker
#define N 2 // N particles in a single system
#define RDIM 3 // Dimension of the position in a single system
#define Np 3 // Numbers of parameters

double Parameters[Np]; // Np parameters for trial wavefunction
double R[Nw][N][RDIM]; // Store the configuration of Nw independent walkers
double Eavg = 0.0; // Average energy <E> of a single system
double E2avg = 0.0; // Average energy squared <E^2> of a single system
double Eerror = 0.0; // Energy error Delta(E) of a single system
double Step = 1.0; // Step of position in random walk that affects accept ratio

/* VMC Main Function */
void VMC(FILE *File)
{
int m, t;
double sum, sumE, sumE2; // Sum of E, E^2 over each Markov chain
int Nadjust = ceil(0.1 * Nskip); // Interval to adjust the step
double AR; // Accept ratio of each Sweep
int Naccept = 0; // Counting Accept Ratio
Eavg = E2avg = 0.0; // Initialize external viables

// Sweep for M Markov chains
for(m = 0; m < M; m++) {
// Initialize r1279() random number generator
long seed = seedgen();
setr1279(seed);
// Initialize R to equal probability random states (cooling)
InitState();

// Sweep Nskip steps to get thermal equibilium
Naccept = 0;
for(t = 1; t <= Nskip; t++) {
// MCSweep & get accept ratio
Naccept += MCSweep();
// Adjust the step (every Nadjust steps) to get accept ratio ⇠ 0.5
if(t % Nadjust == 0) {
AR = 1.0 * Naccept/ (Nw * Nadjust);
Step *= AR/ 0.5;
// reset counter
Naccept = 0;

}
}

Naccept = 0;
// Initialize sumE, sumE2 to zero
sum = 0.0;
sumE = 0.0;
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sumE2 = 0.0;
// Sweep & measure for Nt steps
for(t = 1; t <= Nt; t++)
{
Naccept += MCSweep();
// Average over Nw systems
sum = GetEnergy()/ Nw;
// Sum up over Nt steps
sumE += sum;
sumE2 += sum * sum;

}

// Sum up over each Chain
Eavg += sumE/ Nt;
E2avg += sumE2/ Nt;
// Monitor accept ratio
AR = 1.0 * Naccept/ (Nw * Nt);

}

// Get <E>, <E^2>, Error of a single system over M Markov chains
Eavg /= M;
E2avg /= M;
Eerror = sqrt(E2avg - Eavg * Eavg)/ sqrt(Nt - 1.0);

// Output parameters & results to a file
for(t = 0; t < Np; t++) {
fprintf(File, "%.10lf ", Parameters[t]);

}
fprintf(File, "%.10lf %.10lf %.10lf %lf\n", Eavg, E2avg, Eerror, AR);

return;
}

/* Perform one MC Sweep, return number of accepts */
int MCSweep()
{
int i;
int pos; // Index [0, Nw-1] of current single system R[pos][N][RDIM]
State Trial; // Create Trial[N][RDIM] to store the state of trial single system
int Naccept = 0; // Count number of accepts
double prob; // Probability of transition

// Update the chain for Nw walkers
for(i = 0; i < Nw; i++) {
// Pick a single system randomly, and assign pointer Pos to it
pos = ir1279() % Nw;
// Get trial state from current state and certain distribution
GetTrialPos(R[pos], Trial);
// Get probability from Pos to Trial
prob = GetProbability(R[pos], Trial);
// Perform importance sampling
if(prob > r1279()) {
// Update state Pos to Trial
UpdateState(R[pos], Trial);
Naccept++;

}
}
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// Return Naccept to count accept ratio
return Naccept;

}
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Simulations of the two-dimensional Ising model were performed on a square lattice using Metropo-
lis and Wol↵ cluster algorithms. Near critical point, Metropolis algorithm showed strong ”Critical
Slowing Down” phenomena while cluster algorithm concurred this defect quite well. Autocorrelation
functions and Finite Size Scaling analysis were conducted in various sizes of systems in detail.

I. INTRODUCTION

The Ising model, named after the physicist Ernst Ising,
is a mathematical model of magnetism in statistical
physics. In Ising model, spins are represented by dis-
crete variables (pointing up: +1 or pointing down: -1) .
The interactions between spins, arranged in a lattice, is
limited to nearest neighbors. And the two-dimensional
square-lattice Ising model is one of the simplest statisti-
cal models to show a phase transition.
On the other hand, Enrico Fermi, John Pasta, and

Stanslaw Ulam created the first ”computer experiment”
to study a vibrating atomic lattice using Monte Carlo
methods. The Monte Carlo methods, named after the
casino in Monaco, use randomly generated numbers to
solve computationally intensive problems when other
techniques unfortunately fail. However, the widespread
usage of Monte Carlo methods did not begin until
Metropolis algorithm was invented by Metropolis, Rosen-
bluth and Teller. The Metropolis algorithm works quite
well in simulating two-dimensional Ising model except
the cases close to Curie temperature. In these cases,
relaxation times diverge when approach the Curie tem-
perature (critical slowing down). Hence, more e�cient
algorithms like cluster algorithm are needed to cure this
problem.
In this report, we implement simulations of the

two-dimensional Ising model on a square lattice using
Metropolis and Wol↵ cluster algorithms. Critical slow-
ing down phenomena, autocorrelation times as well as
the finite size scaling were analyzed in details.

II. MODEL AND ALGORITHM

A. Ising Model

The Hamiltonian of the Ising model on a scale-free
graph in an external magnetic field is given by

H = �J

X

<i,j>

�i�j � h

X

i

�i, (1)

where are spins on a square lattice and sum is over the
four nearest neighbor bonds. It is conventional to set the
coupling strength J = 1 and Boltzmann’s constant k = 1,
which amounts to measuring energies and temperatures

in units of J . The constant h is called the external field,
and M =

P
i �i is called the magnetization.

B. Metropolis Algorithm

The Metropolis algorithm was named after Nicholas
Metropolis, who along with Arianna W. Rosenbluth,
Marshall N. Rosenbluth, Augusta H. Teller, and Ed-
ward Teller, first proposed it for calculating the states
from the canonical ensemble. It can be shown that this
popular method satisfies the detailed balance condition.
Metropolis Algorithm:
(1) Pick a spin randomly;
(2) Compute the energy di↵erence �E for flipping it;
(3) If �E < 0 flip it; if �E > 0 flip it with the proba-

bility e

���E

C. Cluster Algorithm

Near the Cure temperature Tc, the single-spin-filp dy-
namics becomes quite slow known as the correlation time
diverges. Wol↵ improved on the idea of Swendsen and
Wang, camping up with a brilliant algorithm to flip the
spin cluster each time. Wol↵ Cluster Algorithm:
(1) Pick a spin randomly, record its direction, then flip

it.
(2) For each of the four neighboring spins, if its direc-

tion is the same with the host, flip it with a probability
p.
(3) For each new flipped spins, repeat the procedure

(2).
Due to the finite probability for spin flipping, the Wol↵

algorithm is ergodic and Markovian. It also satisfy the
detailed balance.

III. SIMULATIONS AND RESULTS

A. Thermalization

When we perform simulations of Ising model, the ini-
tial configuration is quite crucial. Since it usually deter-
mine how long we need to attain the equilibrium states.
When starting at low temperature, it makes sense to be-
gin with an ordered configuration in which all spins have
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FIG. 1: < M2 > calculated using Wol↵ and Metropolis algo-
rithms are shown as functions of time. Time is represented
by the number of spin sweeps. The calculations have been
performed with a 100 ⇥ 100 lattice at temperature T = 1.5.
Both stat with the ordered configuration.

the same direction, whereas for a high temperature, it
would be better to start at a configuration with randomly
assigned spins.(Fig. 1) It would be di�cult to guess a
suitable initial configuration at a general given T . Some-
times, we may need much more Monte Carlo sweeps be-
fore the system reaches the most probable states if we un-
fortunately made a poor estimate. (Fig. 2) The number
of sweeps to reach a equilibrium configuration is known
as the thermalization. (Fig. 3)

B. Critical Slowing Down

At the critical temperature Tc, some observables be-
come divergent in the thermodynamic limit. It is believed
that long range correlations between spins result in this
critical divergence. When the system is approaching Tc,
the spins are constantly changing dependently. Large
clusters of the same spin direction persist, so spins far
apart from each other are strongly correlated. On the
other hand, dynamical observables are functions of time.
The ”measurements” at each time step construct a time
series. Near Tc, the relaxation time of these time series
become very large and also prove to be shown diverge for
infinite system. Such phenomena is known as ”Critical
Slowing Down”. (Fig. 4)

C. Correlated Measurements and Autocorrelation
Times

The variance of the data in equilibrium can be obtained

FIG. 2: < M2 > is shown as functions of time. Time is
represented by the number of spin sweeps. The calculations
have been performed with a 100⇥ 100 lattice at temperature
T = 1.5. Two initial configurations were used, on with a
random orientation of spins and the other with an ordered
configuration.

FIG. 3: < M2 > calculated using Wol↵ and Metropolis algo-
rithms are shown as functions of time. Time is represented
by the number of spin sweeps. The calculations have been
performed with a 100 ⇥ 100 lattice at temperature T = 2.5.
Both stat with the random distributed configuration.

�

2
O� =

1

N

[�2
Oi

+2
NX

k=1

(< O1O1+k > � < O1 >< O1+k >)(1� k

N

)],

(2)
where, due to the last factor (1 � k/N), the k = N

term may be trivially kept in the summation. And we
introduce the autocorrelation time
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FIG. 4: < M2 > calculated using Wol↵ and Metropolis algo-
rithms are shown as functions of time. Time is represented by
the number of spin sweeps. The calculations have been per-
formed with a 100 ⇥ 100 lattice at temperature Tc = 2.269.
Both stat with the random distributed configuration. It illus-
trates critical slowing down at the beginning sweeps.

FIG. 5: Autocorrelation function calculated using Metropolis
and Wol↵ algorithms. The time data of magnetization were
collected from t = 20000 to t = 21600.

⌧

0
O,int =

1

2
+

NX

k=1

A(k)(1� k

N

), (3)

The normalized autocorrelation function �(t)(Fig. 5)
for overvables is defined as

A(k) =
< O1O1+k > � < O1 >< O1+k >

�

2
Oi

(4)

D. Finite Size Scaling

To analyze the systems, we make measurement and col-
lect data. Standard quantities are the energy and magne-
tization, but depending on the model at hand it may be
useful to record also other observables. In this way the
full dynamical information can be extracted still after
the actual simulation runs and error estimation can be
easily performed. For example it is no problem to experi-
ment with the size and number of Jackknife bins. Since a
reasonable choice depends on the a priori unknown auto-
correlation time, it is quite cumbersome to do a reliable
error analysis on the flight during the simulation. Fur-
thermore, basing data reweighting on time-series data is
more e�cient since histograms, if needed or more conve-
nient, can still be produced from this data but working
in the reverse direction is obviously impossible.
For our model, it is su�cient to perform a single long

run at some coupling T close to the critical point Tc.
Hence, we use Binder parameters to withdraw the infor-
mation we need, since in our model
The Binder parameters

g(T) = 1� < m4
>

3 < m2
>

2
, (5)

In the infinite limit, most of these quantities exhibit sin-
gularities at transition point. If we use a scaling variable,
these singularities are smeared out

x = (T� Tc)L
1/⌫

, (6)

Finite Size Scaling Procedure:
(1) Estimate the critical exponent ⌫. In our model ,

we let ⌫ = 1.
(2) Extract the Tc from the crossings from the Binder

parameter.
(3) Re-analyze the Finite Size Scaling behavior of ob-

servables as a function of the scaling variable x.

IV. SUMMARY AND CONCLUSIONS

We have performed a Monte Carlo simulations for two-
dimensional Ising model with Metropolis algorithm and
Wol↵ cluster algorithm. Critical slowing down are shown.
The autocorrelation function are computed for both al-
gorithms. And we also conduct the Finite Size Scaling
analysis.
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FIG. 6: Binder Ratio calculated using Wol↵ cluster algorithm.
We use 3 di↵erent sizes L = 32, L = 64, L = 128. For
each size, we measured every �T = 0.005 from T = 2.20 to
T = 2.35. And for each particular temperature, we collected
50 samples.

FIG. 7: Scaled Binder Ratio calculated using Wol↵ cluster
algorithm. We use 3 di↵erent sizes L = 32, L = 64, L =
128. For each size, we measured every �T = 0.005 from
T = 2.20 to T = 2.35. And for each particular temperature,
we collected 50 samples.
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