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The needed Thermodynamics

Potentials and their differential

The inner energy E(S,V,N)
dE = TdS — pdV + udN

The Helmholtz free energy F(T,V,N) = E -TS
dF = -SdT - pdV +pdN

The Gibbs free energy G(T,p,N) = F +pV = uN
dG = -SdT + Vdp +udN



Phase diagram
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Clausius-Clapeyron relation:

Landau‘s Symmetry Principle



Two-phase coexistence

Fluid at constant pressure / constant Temperature




Maxwell’s equal area rule:

Pl analytical continuation




Vicinity of the critical point
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Equilibrium volumes: vy — U X T, — T|5

Specific heat: Cy x |T —T,|~°

Shape of the critical isotherm: | — p.| x [V — V,|°



Van der Waals equation

ideal gas equation: pv = ky D
. kTl a
Van der Waals equation: P=_"73"12

Determination of the critical point:
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- rewrite VAW to cubic-polynomial: vt — b+ 5 YT = 0
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Law of corresponding states:
- rescale VAW equation to dimensionless form by rescaling
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- all fluids are predicted to have the same equation of state, with no
other parameters involved

- all thermo dynamic properties which follow from this equation are
universal

- experimentally, the law of corresponding states is well-satisfied,
even by fluids which don‘t obey the VdW equation
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Critical Behaviour:

- Now we will calculate the critical exponents of the Van der Waals
fluid
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Spatial Correlations

Number fluctuations and compressibility

Grand partition function: e~ BH—pN)
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Number Fluctuations and correlations
- Dimensionless two point correlation function:
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Critical Opalescence:

- in a fluid the two-point correlation function also measures the
density fluctuations, which are able to scatter light

Structure factor: S(k) = p]ddm—*‘“‘*'(;:(-r)
arn  kBTEpp
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- The divergence of S(k) is observable, because the scattering of
light increases dramatically near the critical point.
This phenomenon is called critical opalescene.



Measurement of critical exponents

- a critical exponent describes only the leading behavior, there are
usually corrections to scaling

Cy (T) = Alt|™® (1 + Bt + )

- there are also constants of proportionality like critical amplitudes

Determination of critical exponents

- we need very high resolution thermometry

- the analytic background has to be substracted

- instrumental resolution, impurity effects or the finite size of the
system cause rounding of the divergence

- a priori we don't know T,

- critical slowing down



