Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Finite Size Scaling

Darko Pilav

Tutor: Munehisa Matsumoto

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

€ 990

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_c Weak Transition
- Statistical Error
- Summary

1 Introduction

Motivating the Scaling Function
 Scaling Function Hypothesis

= 900

Interpretation

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition
- Statistical Error
- Summary

1 Introduction

- Motivating the Scaling Function
 Scaling Function Hypothesis
 - Interpretation

3 Obtaining T_c

Maximum of TD quantities

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 \equiv

Dac

- Binder Cumulant
- Behaviour of ξ

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Introduction

- 2 Motivating the Scaling Function
 - Scaling Function Hypothesis
 - Interpretation

3 Obtaining T_c

- Maximum of TD quantities
- Binder Cumulant
- Behaviour of ξ
- 4 Distinguishing between First and Second Order Transitions

- Behaviour of Histogram Peaks
- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_c
- Problem of the Weak 1st Order Transition

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Introduction

2 Motivating the Scaling Function

- Scaling Function Hypothesis
- Interpretation

3 Obtaining T_c

- Maximum of TD quantities
- Binder Cumulant
- Behaviour of ξ
- 4 Distinguishing between First and Second Order Transitions

- Behaviour of Histogram Peaks
- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_c
- Problem of the Weak 1st Order Transition

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Introduction

- 2 Motivating the Scaling Function
 - Scaling Function Hypothesis
 - Interpretation

3 Obtaining T_c

- Maximum of TD quantities
- Binder Cumulant
- Behaviour of ξ
- ④ Distinguishing between First and Second Order Transitions
 Behaviour of Histogram Peaks
 - Finite Size Scaling on 1st Order Transitions
 - Behaviour of TD quantities at T_c
 - Problem of the Weak 1st Order Transition

6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

 $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Existence of phase transitions only in TD limit

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Existence of phase transitions only in TD limit

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Phase transitions occur only in thermodynamical limit

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Existence of phase transitions only in TD limit

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

Phase transitions occur only in thermodynamical limitWant to simulate such systems

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Existence of phase transitions only in TD limit

Phase transitions occur only in thermodynamical limit • Want to simulate such systems

• Problem: finite memory and processing time

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Existence of phase transitions only in TD limit

Phase transitions occur only in thermodynamical limit

- Want to simulate such systems
 - Problem: finite memory and processing time
 - Idea: Analyse finite systems and deduce conclusions for TD limit

Darko Pilav

How to find T_c

Introduction

- Motivating the Scaling Function
- Hypothesis Interpretation
- $\begin{array}{c} \text{Obtaining} \ T_c \\ \text{Maximum of TD} \\ \text{quantities} \\ \text{Binder Cumulant} \end{array}$
- Behaviour of $\boldsymbol{\xi}$
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_c Weak Transition
- Statistical Error
- Summary

Darko Pilav

Introduction

Motivating the Scaling Function Scaling Function Hypothesis Interpretation

 $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

How to find T_c

• No problem in Thermodynamical limit

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition
- Statistical Error
- Summary

How to find T_c

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

- No problem in Thermodynamical limit
- Look at finite system

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

How to find ${\cal T}_c$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 \equiv

Sac

- No problem in Thermodynamical limit
- Look at finite system

Figure: In TD limit the order parameter is 0 for $T>T_c$ but in FS the transition is smeared out.

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

 $\begin{array}{l} \text{Obtaining } T_c \\ \text{Maximum of TD} \\ \text{quantities} \\ \text{Binder Cumulant} \\ \text{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

1st or 2nd order transition?

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$
- 1st or 2nd Order?
- $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_{C}\\ \mbox{Weak Transition} \end{array}$
- Statistical Error
- Summary

1st or 2nd order transition?

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

• No problem in Thermodynamical limit

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ
- 1st or 2nd Order?
- $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_{C}\\ \mbox{Weak Transition} \end{array}$
- Statistical Error
- Summary

1st or 2nd order transition?

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

- No problem in Thermodynamical limit
- Look at finite system

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

1st or 2nd order transition?

- No problem in Thermodynamical limit
- Look at finite system

Equilibrium TD behaviour of FS smooth for both 1st AND 2nd order transitions

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

Darko Pilav

Summary of Problems

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Problems:

• Cannot simulate infinite system

Darko Pilav

Summary of Problems

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition
- Statistical Error
- Summary

Problems:

- Cannot simulate infinite system
- Finding T_c

Darko Pilav

Summary of Problems

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

 $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_{C}\\ \mbox{Weak Transition} \end{array}$

Statistical Error

Summary

Problems:

- Cannot simulate infinite system
- Finding T_c
- Distinguishing between 1st and 2nd order transitions

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Introduction

Motivating the Scaling Function Scaling Function Hypothesis

Interpretation

Obtaining T_c

- Maximum of TD quantities
- Binder Cumulant
- Behaviour of ξ
- Distinguishing between First and Second Order Transitions
 Behaviour of Histogram Peaks

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

1

Sar

- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_c
- Problem of the Weak 1st Order Transition
- 5 Statistical Error
- 6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Interpretation Obtaining T_c

Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Consider the magnetic susceptibility:

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Consider the magnetic susceptibility:

• Can be defined as
$$k_B T \chi_M = \sum_{\{i,j\}} \langle \sigma_i \sigma_j \rangle - \langle \sigma_i \rangle \langle \sigma_j \rangle$$

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Consider the magnetic susceptibility:

• Can be defined as $k_B T \chi_M = \sum_{\{i,j\}} \langle \sigma_i \sigma_j \rangle - \langle \sigma_i \rangle \langle \sigma_j \rangle$

• Approaching T_c results in divergence of ξ

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Consider the magnetic susceptibility:

- Can be defined as $k_B T \chi_M = \sum_{\{i,j\}} \langle \sigma_i \sigma_j \rangle \langle \sigma_i \rangle \langle \sigma_j \rangle$
- Approaching T_c results in divergence of $\xi \to$ susceptibility saturates as $\xi \sim L$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Consider the magnetic susceptibility:

- Can be defined as $k_B T \chi_M = \sum_{\{i,j\}} \langle \sigma_i \sigma_j \rangle \langle \sigma_i \rangle \langle \sigma_j \rangle$
- Approaching T_c results in divergence of $\xi \to$ susceptibility saturates as $\xi \sim L$

• Including this into scaling theorie gives $\chi(L,T) = |t|^{-\gamma}g\left(\frac{L}{\xi(t)}\right)$, where $t = (T - T_c)/T_c$

Darko Pilav

Introduction

Motivating the Scaling Function Scaling Function

Hypothesis

 $\chi(L,T) = |t|^{-\gamma} g\left(\frac{L}{\xi(t)}\right)$

Obtaining T_c Maximum of TD quantities Binder Cumulant

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c

Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

 $\chi(L,T) = |t|^{-\gamma} g\left(\tfrac{L}{\xi(t)} \right)$ q(x) should also satisfy:

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

Dac

 $\chi(L,T) = |t|^{-\gamma} g\left(\tfrac{L}{\xi(t)} \right)$ q(x) should also satisfy:

• $g(x) \rightarrow \text{const.}$ as $x \rightarrow \infty$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities

Binder Cumulan Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

$$\chi(L,T) = |t|^{-\gamma} g\left(\frac{L}{\xi(t)}\right)$$

 $g(x)$ should also satisfy:

•
$$g(x) \rightarrow \text{const.}$$
 as $x \rightarrow \infty$
• $g(x) \propto x^{\gamma/\nu}$ as $x \rightarrow 0$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

$$\begin{split} \chi(L,T) &= |t|^{-\gamma}g\left(\frac{L}{\xi(t)}\right)\\ g(x) \text{ should also satisfy:} \end{split}$$

•
$$g(x) \rightarrow \text{const.}$$
 as $x \rightarrow \infty$

•
$$g(x) \propto x^{\gamma/\nu}$$
 as $x \to 0$

 First constraint: Ensures correct powerlaw behaviour in TD limit.

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

$$\chi(L,T) = |t|^{-\gamma} g\left(\frac{L}{\xi(t)}\right)$$

g(x) should also satisfy:

•
$$g(x) \rightarrow \text{const.}$$
 as $x \rightarrow \infty$

•
$$g(x) \propto x^{\gamma/\nu}$$
 as $x \to 0$

- First constraint: Ensures correct powerlaw behaviour in TD limit.
- Second constraint: Ensures temperature independent Magnetic Susceptibility for $\xi \gg L$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

$$\begin{split} \chi(L,T) &= |t|^{-\gamma}g\left(\frac{L}{\xi(t)}\right)\\ g(x) \text{ should also satisfy:} \end{split}$$

•
$$g(x) \to \text{const.}$$
 as $x \to \infty$

•
$$g(x) \propto x^{\gamma/\nu}$$
 as $x \to 0$

- First constraint: Ensures correct powerlaw behaviour in TD limit.
- $\, \circ \,$ Second constraint: Ensures temperature independent Magnetic Susceptibility for $\xi \gg L$

• Sideproduct: Maximum of TD quantity grows like $L^{\gamma/\nu}$
Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Scaling Functions

TD limit

FS system

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Scaling Functions

TD limit $M \propto |t|^{-\beta}$

FS system $M = L^{-\beta/\nu} g_M(t L^{1/\nu})$

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Scaling Functions

TD limit $M \propto |t|^{-\beta}$ $\chi \propto |t|^{\gamma}$ FS system
$$\begin{split} M &= L^{-\beta/\nu} g_M(t L^{1/\nu})\\ \chi &= L^{\gamma/\nu} g_\chi(t L^{1/\nu}) \end{split}$$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Scaling Functions

TD limit $M \propto |t|^{-\beta}$ $\chi \propto |t|^{\gamma}$ $C \propto |t|^{\alpha}$ FS system
$$\begin{split} M &= L^{-\beta/\nu} g_M(tL^{1/\nu}) \\ \chi &= L^{\gamma/\nu} g_{\chi}(tL^{1/\nu}) \\ C &= L^{\alpha/\nu} g_C(tL^{1/\nu}) \end{split}$$

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Scaling Functions

TD limit $M \propto |t|^{-\beta}$ $\chi \propto |t|^{\gamma}$ $C \propto |t|^{\alpha}$ FS system $M = L^{-\beta/\nu} g_M(tL^{1/\nu})$ $\chi = L^{\gamma/\nu} g_{\chi}(tL^{1/\nu})$ $C = L^{\alpha/\nu} g_C(tL^{1/\nu})$

Note: Only valid for

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Scaling Functions

TD limit $M \propto |t|^{-\beta}$ $\chi \propto |t|^{\gamma}$ $C \propto |t|^{\alpha}$ FS system $M = L^{-\beta/\nu} g_M(tL^{1/\nu})$ $\chi = L^{\gamma/\nu} g_{\chi}(tL^{1/\nu})$ $C = L^{\alpha/\nu} g_C(tL^{1/\nu})$

Note: Only valid for

• Temperatures close enought to T_c

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Motivating the Scaling Function

Scaling Functions

TD limit $M \propto |t|^{-\beta}$ $\chi \propto |t|^{\gamma}$ $C \propto |t|^{\alpha}$ FS system
$$\begin{split} M &= L^{-\beta/\nu} g_M(t L^{1/\nu}) \\ \chi &= L^{\gamma/\nu} g_\chi(t L^{1/\nu}) \\ C &= L^{\alpha/\nu} g_C(t L^{1/\nu}) \end{split}$$

Note: Only valid for

- Temperatures close enought to T_c
- Sufficently large system sizes L

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Introduction

Motivating the Scaling Function Scaling Function Hypothesis

Interpretation

Obtaining T_c

- Maximum of TD quantities
- Binder Cumulant
- Behaviour of ξ
- Distinguishing between First and Second Order Transitions
 Behaviour of Histogram Peaks

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

1

Sar

- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_c
- Problem of the Weak 1st Order Transition
- 5 Statistical Error
- 6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Interpretation

 $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Interpretation

Let's look at heat capacity $C = L^{\alpha/\nu}g_C(tL^{1/\nu})$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Interpretation

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Let's look at heat capacity $C = L^{\alpha/\nu}g_C(tL^{1/\nu})$

```
Plot C/L^{\alpha/\nu} with respect to tL^{1/\nu}
```

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Interpretation

 $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Plot $C/L^{\alpha/\nu}$ with respect to $tL^{1/\nu}$

Figure: With correct exponents we see data collapse near T_c

<ロ> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日> <日</p>

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Interpretation

 $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Interpretation

Another example $\chi = L^{\gamma/\nu}g_C(tL^{1/\nu})$

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Interpretation

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Another example
$$\chi = L^{\gamma/\nu}g_C(tL^{1/\nu})$$

Plot $\chi/L^{\gamma/\nu}$ with respect to $tL^{1/\nu}$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Interpretation

 $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Another example $\chi = L^{\gamma/\nu}g_C(tL^{1/\nu})$

Plot $\chi/L^{\gamma/\nu}$ with respect to $tL^{1/\nu}$

Figure: With correct exponents we see data collapse near T_c

< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

 $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_{C}\\ \mbox{Weak Transition} \end{array}$

Statistical Error

Summary

Remarks

• Numerical algorithms for data fitting exist

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis

Interpretation

- $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition
- Statistical Error
- Summary

Remarks

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

- Numerical algorithms for data fitting exist
- One obtains all parameters at once

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

 $\begin{array}{l} \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \mbox{\xi} \end{array}$

1st or 2nd Order?

 $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_C\\ \mbox{Weak Transition} \end{array}$

Statistical Error

Summary

Introduction

Motivating the Scaling FunctionScaling Function HypothesisInterpretation

3 Obtaining T_c

- Maximum of TD quantities
- Binder Cumulant
- Behaviour of ξ
- Distinguishing between First and Second Order Transitions Behaviour of Histogram Peaks

・ロト ・ 同ト ・ ヨト ・ ヨト

=

Sar

- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_c
- Problem of the Weak 1st Order Transition
- 5 Statistical Error
- 6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function How to obtain T_c ?

Scaling Function Hypothesis Interpretation

Obtaining ${\cal T}_{\cal C}$

 $\begin{array}{l} \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Obtaining T_c

▲□▶▲□▶▲□▶▲□▶ ▲□▼

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining ${\cal T}_{c}$

 $\begin{array}{l} \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Obtaining T_c

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 \equiv

Sac

How to obtain T_c ? • Order Parameter $\neq 0$ $\forall T < \infty$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining ${\cal T}_{c}$

 $\begin{array}{l} \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Obtaining T_c

How to obtain T_c ? • Order Parameter $\neq 0$ $\forall T < \infty$

Figure: The order parameter is never zero.

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining ${\cal T}_{\cal C}$

 $\begin{array}{l} \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Obtaining T_c

How to obtain T_c ?

▲ロト ▲暦 ト ▲臣 ト ▲臣 - ○へ⊙

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining ${\cal T}_c$

Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Obtaining T_c

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

How to obtain T_c ?

 No divergence of Correlation Length, Magnetic Susceptibility or HeatCapacity

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining ${\cal T}_c$

 $\begin{array}{l} \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

 $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_C\\ \mbox{Weak Transition} \end{array}$

Statistical Error

Summary

Obtaining T_c

How to obtain T_c ?

 No divergence of Correlation Length, Magnetic Susceptibility or HeatCapacity

Figure: The quantities do not diverge.

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation

Obtaining ${\cal T}_{\it c}$

- $\begin{array}{l} \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_c Weak Transition
- Statistical Error
- Summary

Obtaining T_c

Different Solutions for this problem

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation

Obtaining ${\cal T}_{c}$

 $\begin{array}{l} \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

 $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_C\\ \mbox{Weak Transition} \end{array}$

Statistical Error

Summary

Obtaining T_c

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Different Solutions for this problem

• Behaviour of Maximum of χ or C

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation

Obtaining ${\cal T}_{c}$

- $\begin{array}{l} \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$
- 1st or 2nd Order?
- $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_{C}\\ \mbox{Weak Transition} \end{array}$
- Statistical Error
- Summary

Obtaining T_c

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Different Solutions for this problem

• Behaviour of Maximum of χ or C

• Binder Cumulant
$$U_L := 1 - \frac{\langle M^4 \rangle_L}{3 \langle M^2 \rangle_L^2}$$

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation

Obtaining ${\cal T}_{c}$

- $\begin{array}{l} \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition
- Statistical Error
- Summary

Obtaining T_c

・ロト ・ 戸 ト ・ 日 ト ・ 日 ト

Dac

Different Solutions for this problem

- Behaviour of Maximum of χ or C
- Binder Cumulant $U_L := 1 \frac{\langle M^4 \rangle_L}{3 \langle M^2 \rangle_L^2}$
- Behaviour of Correlation Length ξ

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Introduction

Motivating the Scaling FunctionScaling Function HypothesisInterpretation

3 Obtaining T_c

Maximum of TD quantities

- Binder Cumulant
- Behaviour of ξ
- Distinguishing between First and Second Order Transitions Behaviour of Histogram Peaks

・ロト ・ 同ト ・ ヨト ・ ヨト

1

Sar

- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_c
- Problem of the Weak 1st Order Transition
- 5 Statistical Error
- 6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c

Maximum of TD quantities

Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Maximum of χ

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Behaviour of Maximum of TD quantities (e.g. χ or C)

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Introduction

Finite Size Scaling

Darko Pilav

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Behaviour of Maximum of TD quantities (e.g. χ or C) Temperature where χ or C experiences maximum is not exactly T_c

Darko Pilav

Maximum of χ

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities Binder Cumulant

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Behaviour of Maximum of TD quantities (e.g. χ or C) Temperature where χ or C experiences maximum is not exactly T_c

• Denote temperature where χ has maximum by $T_c(L)$

Introduction

Finite Size Scaling

Darko Pilav

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities Binder Cumulant

Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Behaviour of Maximum of TD quantities (e.g. χ or C) Temperature where χ or C experiences maximum is not exactly T_c

• Denote temperature where χ has maximum by $T_c(L)$

• Assumption: $\xi(T_c(L) - T_c) = aL$

Introduction

Finite Size Scaling

Darko Pilav

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Behaviour of Maximum of TD quantities (e.g. χ or C) Temperature where χ or C experiences maximum is not exactly T_c

• Denote temperature where χ has maximum by $T_c(L)$

• Assumption: $\xi(T_c(L) - T_c) = aL$ Since $\xi(x) \propto |x|^{-\nu}$

Introduction

Finite Size Scaling

Darko Pilav

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Behaviour of Maximum of TD quantities (e.g. χ or C) Temperature where χ or C experiences maximum is not exactly T_c

• Denote temperature where χ has maximum by $T_c(L)$

• Assumption:
$$\xi(T_c(L) - T_c) = aL$$

Since $\xi(x) \propto |x|^{-\nu}$
 $T_c(L) = T_c + bL^{-1/\nu}$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Maximum of χ

$T_c(L) = T_c + bL^{-1/\nu}$

Darko Pilav

Maximum of χ

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

$T_c(L) = T_c + bL^{-1/\nu}$ Problem: 3 tunable Parameters (T_c, b, ν)
Darko Pilav

Maximum of χ

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

$T_c(L) = T_c + bL^{-1/\nu}$ Problem: 3 tunable Parameters (T_c, b, ν)

Need data with good statistical accuracy

Maximum of χ

Finite Size Scaling

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

$T_c(L) = T_c + bL^{-1/\nu}$ Problem: 3 tunable Parameters (T_c, b, ν)

- Need data with good statistical accuracy
- Measure different quantities (since all have same T_c, b, ν)

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Binder Cumulant

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Introduction

Motivating the Scaling FunctionScaling Function HypothesisInterpretation

3 Obtaining T_c

• Maximum of TD quantities

Binder Cumulant

• Behaviour of ξ

Distinguishing between First and Second Order Transitions • Behaviour of Histogram Peaks

・ロト ・ 同ト ・ ヨト ・ ヨト

=

Sar

- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_c
- Problem of the Weak 1st Order Transition
- 5 Statistical Error
- 6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Binder Cumulant

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Binder Cumulant

Figure: Prof. Dr. Kurt Binder

・ロト ・ 日 ・ ・ 田 ト ・ 日 ト ・ 日 ト

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c

Maximum of TD quantities

Binder Cumulant

Behaviour of $\boldsymbol{\xi}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Binder Cumulant

Binder Cumulant
$$U_L := 1 - \frac{\langle M^4 \rangle_L}{3 \langle M^2 \rangle_L^2}$$

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Binder Cumulant

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Binder Cumulant
$$U_L := 1 - \frac{\langle M^4 \rangle_L}{3 \langle M^2 \rangle_L^2}$$

Binder Cumulant not depending on L at T_c

$$\frac{\langle M^4 \rangle_L}{\langle M^2 \rangle_L^2} = \frac{L^{-4\beta/\nu} g_{M^4}(tL^{1/\nu})}{\left(L^{-2\beta/\nu} g_{M^2}(tL^{1/\nu})\right)^2} = g_c(tL^{(1/\nu)})$$

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Binder Cumulant

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Binder Cumulant
$$U_L := 1 - \frac{\langle M^4 \rangle_L}{3 \langle M^2 \rangle_L^2}$$

Binder Cumulant not depending on L at T_c

$$\frac{\langle M^4 \rangle_L}{\langle M^2 \rangle_L^2} = \frac{L^{-4\beta/\nu} g_{M^4}(tL^{1/\nu})}{\left(L^{-2\beta/\nu} g_{M^2}(tL^{1/\nu})\right)^2} = g_c(tL^{(1/\nu)})$$

• For
$$T > T_c \ \langle M^4 \rangle_L = 3 \langle M^2 \rangle_L^2$$

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation

 $\begin{array}{l} \text{Obtaining} \ T_c \\ \text{Maximum of TD} \\ \text{quantities} \\ \text{Binder Cumulant} \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Binder Cumulant

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Binder Cumulant
$$U_L := 1 - \frac{\langle M^4 \rangle_L}{3 \langle M^2 \rangle_L^2}$$

Binder Cumulant not depending on L at T_c

$$\frac{\langle M^4 \rangle_L}{\langle M^2 \rangle_L^2} = \frac{L^{-4\beta/\nu} g_{M^4}(tL^{1/\nu})}{\left(L^{-2\beta/\nu} g_{M^2}(tL^{1/\nu})\right)^2} = g_c(tL^{(1/\nu)})$$

• For
$$T > T_c \langle M^4 \rangle_L = 3 \langle M^2 \rangle_L^2$$

• For $T < T_c \langle M^4 \rangle_L = \langle M^2 \rangle_L^2$

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis

Obtaining T_c

Maximum of TD quantities

Binder Cumulant

Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Binder Cumulant

Figure: Binder Parameter for the 3D Ising Model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Darko Pilav

Binder Cumulant

Э

Sac

ntroduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c

Maximum of TD quantities

Binder Cumulant

Behaviour of $\boldsymbol{\xi}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Possible to apply FSS on Binder Cumulant

Figure: Obtaining of ν with FSS of U_L

Darko Pilav

Binder Cumulant

3

Sac

ntroduction

Motivating the Scaling Function

Scaling Function Hypothesis

Obtaining T_c

Maximum of TD quantities

Binder Cumulant

Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Possible to apply FSS on Binder Cumulant

Figure: Obtaining of ν with FSS of U_L

• β canceled out

Darko Pilav

Binder Cumulant

・ロト ・ 同ト ・ ヨト ・ ヨト

3

500

ntroduction

- Motivating the Scaling Function
- Scaling Function Hypothesis
- Obtaining T_c
- Maximum of TD quantities

Binder Cumulant

- Behaviour of ξ
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition
- Statistical Error
- Summary

Possible to apply FSS on Binder Cumulant

Figure: Obtaining of ν with FSS of U_L

- β canceled out
- T_c obtained via point of intersection

Darko Pilav

Binder Cumulant

・ロト ・ 同ト ・ ヨト ・ ヨト

3

500

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis
- Obtaining T_c
- Maximum of TD quantities
- Binder Cumulant
- Behaviour of $\boldsymbol{\xi}$
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition
- Statistical Error
- Summary

Possible to apply FSS on Binder Cumulant

Figure: Obtaining of ν with FSS of U_L

- $\bullet \ \beta$ canceled out
- T_c obtained via point of intersection
- \Longrightarrow Have to tune only ν

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Introduction

Motivating the Scaling FunctionScaling Function HypothesisInterpretation

3 Obtaining T_c

- Maximum of TD quantities
- Binder Cumulant

• Behaviour of ξ

Distinguishing between First and Second Order Transitions Behaviour of Histogram Peaks

・ロト ・ 同ト ・ ヨト ・ ヨト

=

Sar

- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_c
- Problem of the Weak 1st Order Transition
- 5 Statistical Error
- 6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities

Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Obtaining T_c by observing ξ

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Similarly to the Binder Cumulant method we can derive T_c with $\boldsymbol{\xi}$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

 $\begin{array}{l} \mbox{Obtaining} \ T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \end{array}$

Behaviour of $\boldsymbol{\xi}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Obtaining T_c by observing ξ

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Similarly to the Binder Cumulant method we can derive T_c with $\boldsymbol{\xi}$

since $\xi_L = Lg_{\xi}(tL^{1/\nu})$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

 $\begin{array}{l} \text{Obtaining} \ T_c \\ \text{Maximum of TD} \\ \text{quantities} \\ \text{Binder Cumulant} \end{array}$

Behaviour of $\boldsymbol{\xi}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Obtaining T_c by observing ξ

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Similarly to the Binder Cumulant method we can derive T_c with $\boldsymbol{\xi}$

since
$$\xi_L = Lg_{\xi}(tL^{1/\nu}) \qquad \stackrel{T \to T_c}{\longrightarrow} \qquad \xi_L/L = g_{\xi}(0)$$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Obtaining T_c by observing ξ

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Similarly to the Binder Cumulant method we can derive T_c with $\boldsymbol{\xi}$

since
$$\xi_L = Lg_{\xi}(tL^{1/\nu}) \qquad \stackrel{T \to T_c}{\longrightarrow} \qquad \xi_L/L = g_{\xi}(0)$$

Therefore ξ_L for different L intersect at T_c

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Obtaining T_c by observing ξ

Similarly to the Binder Cumulant method we can derive T_c with ${\ensuremath{\mathcal E}}$

since $\xi_L = Lg_{\xi}(tL^{1/\nu}) \xrightarrow{T \to T_c} \xi_L/L = g_{\xi}(0)$ Therefore ξ_L for different L intersect at T_c

Figure: Obtaining T_c with ξ

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities

Binder Cumulant

Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Obtaining T_c by observing ξ

Possible to apply FSS to ξ_L/L

Figure: Obtaining ν with FSS of ξ/L

=

Dac

 $\bullet~T_c$ obtained via point of intersection

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities

Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Obtaining T_c by observing ξ

Possible to apply FSS to ξ_L/L

Figure: Obtaining ν with FSS of ξ/L

・ロト ・ 同ト ・ ヨト ・ ヨト

=

Dac

• T_c obtained via point of intersection

 \Longrightarrow Have to tune only u

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition
- Statistical Error

Summary

Introduction

- Motivating the Scaling FunctionScaling Function Hypothesis
- Interpretation
- Obtaining T_c
 - Maximum of TD quantities
 - Binder Cumulant
 - Behaviour of ξ

4 Distinguishing between First and Second Order Transitions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Sar

- Behaviour of Histogram Peaks
- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_{c}
- Problem of the Weak 1st Order Transition
- 5 Statistical Error
- 6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Big Problem!

1st or 2nd Order?

Darko Pilav

1st or 2nd Order?

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

 $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_C\\ \mbox{Weak Transition} \end{array}$

Statistical Error

Summary

Big Problem!

• Finite Size Scaling will not work

Darko Pilav

1st or 2nd Order?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 \equiv

Sac

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Big Problem!

- Finite Size Scaling will not work
- Histogram peaks will not merge

Darko Pilav

1st or 2nd Order?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Sac

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

- $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_{C}\\ \mbox{Weak Transition} \end{array}$
- Statistical Error
- Summary

Big Problem!

- Finite Size Scaling will not work
- Histogram peaks will not merge
- No critical exponents

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Example: Ising Model

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sac

Phase diagram of the Ising Model

Figure: Phase Diagram of the Ising Model

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ
- 1st or 2nd Order?
- Histogram Peaks
- Failure of FSS Maxima at T_C Weak Transition
- Statistical Error

Summary

Introduction

- Motivating the Scaling Function • Scaling Function Hypothesis
- Interpretation
- Obtaining T_c
 - Maximum of TD quantities
 - Binder Cumulant
 - Behaviour of ξ

④ Distinguishing between First and Second Order Transitions ● Behaviour of Histogram Peaks

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

1

Sar

- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_c
- Problem of the Weak 1st Order Transition
- 5 Statistical Error
- 6 Summary

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$
- 1st or 2nd Order?

Histogram Peaks

- Maxima at T_c Weak Transition
- Statistical Error
- Summary

Histogram peaks

• Look at behaviour of M at $T < T_c$ and $H \approx 0$

Figure: Spontaneous Magnetisation fluctuates from one ordered state to the other

Darko Pilav

Histogram Peaks

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks

Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

• Plot Histogram of ${\cal M}$ - increase system size

Darko Pilav

Histogram Peaks

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks

Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Plot Histogram of M - increase system size If Peaks merge ⇒ 2nd order transition

Darko Pilav

Histogram Peaks

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks

Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

${\ensuremath{\, \bullet }}$ Plot Histogram of M - increase system size

- If Peaks merge \Rightarrow 2nd order transition
- If Peaks don't move \Rightarrow 1st order transition

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ
- 1st or 2nd Order?
- $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_C\\ \mbox{Weak Transition} \end{array}$
- Statistical Error

Summary

Introduction

- Motivating the Scaling Function • Scaling Function Hypothesis
- Interpretation
- Obtaining T_c
 - Maximum of TD quantities
 - Binder Cumulant
 - Behaviour of ξ
- Distinguishing between First and Second Order Transitions
 Declaration
 - Finite Size Scaling on 1st Order Transitions
 - Behaviour of TD quantities at T_{c}
 - Problem of the Weak 1st Order Transition
 - 5 Statistical Error
- 6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks

${\sf Failure} \ {\sf of} \ {\sf FSS}$

Maxima at T_c Weak Transition

Statistical Error

Summary

Finite Size Scaling on 1st Order Transitions

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

• Can not obtain good values for critical exponents

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks

Failure of FSS

 $\begin{array}{l} {\rm Maxima \ at \ } T_{C} \\ {\rm Weak \ Transition} \end{array}$

Statistical Error

Summary

Finite Size Scaling on 1st Order Transitions

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

Or Can not obtain good values for critical exponents
 ⇒ No data collapse

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Finite Size Scaling on 1st Order Transitions

- Or Can not obtain good values for critical exponents
 ⇒ No data collapse
- No single intersection point of Binder cumulant or ξ/L

・ロト ・ 同ト ・ ヨト ・ ヨト

= nac
Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS
- $\begin{array}{l} {\sf Maxima \ at \ } T_{c} \\ {\sf Weak \ Transition} \end{array}$
- Statistical Error

Summary

Introduction

- Motivating the Scaling FunctionScaling Function Hypothesis
- Interpretation
- Obtaining T_c
 - Maximum of TD quantities
 - Binder Cumulant
 - Behaviour of ξ

④ Distinguishing between First and Second Order Transitions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

1

Sar

- Behaviour of Histogram Peaks
- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_{c}
- Problem of the Weak 1st Order Transition
- 5 Statistical Error
- 6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS

Maxima at T_c Weak Transition

Statistical Error

Summary

Maxima of TD quantities at T_c

• Look at Maxima of TD quantities at T_c

Figure: 1st Order Phase Transition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS

 $\mathsf{Maxima} \text{ at } T_C$

Weak Transition

Statistical Error

Summary

Maxima of TD quantities at T_c

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

• Peaks scale like $L^{\alpha/\nu} \Rightarrow 2nd$ order transition

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS

 $\mathsf{Maxima} \text{ at } T_C$

Weak Transition

Statistica Error

Summary

Maxima of TD quantities at T_c

= 900

- Peaks scale like $L^{\alpha/\nu} \Rightarrow$ 2nd order transition
- Peaks scale like $L^d \Rightarrow 1$ st order transition

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Introduction

- Motivating the Scaling FunctionScaling Function Hypothesis
- Interpretation
- Obtaining T_c
 - Maximum of TD quantities
 - Binder Cumulant
 - Behaviour of ξ

4 Distinguishing between First and Second Order Transitions

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sar

- Behaviour of Histogram Peaks
- Finite Size Scaling on 1st Order Transitions
- Behaviour of TD quantities at T_c
- Problem of the Weak 1st Order Transition
- Statistical Error
- 6 Summary

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistica Error

Summary

Weak 1st Order Transition

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

If we have weak 1st order phase transition

Scaling might work quite well (with completely wrong exponents)

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

 $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistica Error

Summary

Weak 1st Order Transition

・ロト ・ 同ト ・ ヨト ・ ヨト

1

Sar

If we have weak 1st order phase transition

- Scaling might work quite well (with completely wrong exponents)
- Peaks in histogram might emerge only at large L

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Weak 1st Order Transition

・ロト ・ 同ト ・ ヨト ・ ヨト

1

Sar

If we have weak 1st order phase transition

- Scaling might work quite well (with completely wrong exponents)
- Peaks in histogram might emerge only at large L

 \implies Active area of research

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Introduction

- Motivating the Scaling Function • Scaling Function Hypothesis
- Interpretation
- Obtaining T_c
 - Maximum of TD quantities
 - Binder Cumulant
 - Behaviour of ξ
- Distinguishing between First and Second Order Transitions
 Behaviour of Histogram Peaks
 - Finite Size Scaling on 1st Order Transitions
 - Behaviour of TD quantities at T_c
 - Problem of the Weak 1st Order Transition

5 Statistical Error

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_c Weak Transition

Statistical Error

Summary

Different Error Sources

• Finite Size Effects

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Different Error Sources

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

- Finite Size Effects
- Statistical Errors

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Different Error Sources

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

- Finite Size Effects
- Statistical Errors
- Relaxation Effects

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Different Error Sources

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

- Finite Size Effects
- Statistical Errors
- Relaxation Effects

• ...

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

 $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Statistical Error

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

$$\begin{split} \tau_A &\equiv \int_0^\infty \phi_A dt \\ \langle (\delta A)^2 \rangle &\equiv \frac{1}{\mathcal{N}} \left(\langle A^2 \rangle - \langle A \rangle^2 \right) \left(1 + 2 \frac{\tau_A}{\delta t} \right) \end{split}$$

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Statistical Error

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

$$\tau_A \equiv \int_0^\infty \phi_A dt$$
$$\langle (\delta A)^2 \rangle \equiv \frac{1}{\mathcal{N}} \left(\langle A^2 \rangle - \langle A \rangle^2 \right) \left(1 + 2 \frac{\tau_A}{\delta t} \right)$$

• $1 + 2\tau_A/\delta t$ is so called "Statistical Inefficiency"

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Statistical Error

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Summary

$$\tau_A \equiv \int_0^\infty \phi_A dt$$
$$\langle (\delta A)^2 \rangle \equiv \frac{1}{\mathcal{N}} \left(\langle A^2 \rangle - \langle A \rangle^2 \right) \left(1 + 2 \frac{\tau_A}{\delta t} \right)$$

• $1+2\tau_A/\delta t$ is so called "Statistical Inefficiency"

Near 2nd order phase transitions \(\tau_A\) diverges (critical slowing down)

Darko Pilav

Introduction

Motivating the Scaling Function

Scaling Function Hypothesis Interpretation

Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

Summary

Statistical Error

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Summary

$$\tau_A \equiv \int_0^\infty \phi_A dt$$
$$\langle (\delta A)^2 \rangle \equiv \frac{1}{\mathcal{N}} \left(\langle A^2 \rangle - \langle A \rangle^2 \right) \left(1 + 2 \frac{\tau_A}{\delta t} \right)$$

• $1+2\tau_A/\delta t$ is so called "Statistical Inefficiency"

- Near 2nd order phase transitions τ_A diverges (critical slowing down)
- Algorithms that reduce critical slowing down very important

Darko Pilav

- Motivating the Scaling
- Obtaining T_c Maximum of TD
- 1st or 2nd
- Weak Transition

Summarv

- - Binder Cumulant

- Problem of the Weak 1st Order Transition

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition
- Statistical Error

Summary

Summary

Can nummerically collect information of TD systems due to FSS

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

- $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_C\\ \mbox{Weak Transition} \end{array}$
- Statistical Error

Summary

Summary

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

- Can nummerically collect information of TD systems due to FSS
- Have seen different possibilities to obtain T_c

Summary

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Finite Size Scaling

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

- Can nummerically collect information of TD systems due to FSS
- Have seen different possibilities to obtain T_c
- Problem: Distinguishing between 1st and 2nd order transitions

Summary

Finite Size Scaling

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- $\begin{array}{l} \mbox{Obtaining } T_c \\ \mbox{Maximum of TD} \\ \mbox{quantities} \\ \mbox{Binder Cumulant} \\ \mbox{Behaviour of } \xi \end{array}$

1st or 2nd Order?

Histogram Peaks Failure of FSS Maxima at T_C Weak Transition

Statistical Error

- Can nummerically collect information of TD systems due to FSS
- Have seen different possibilities to obtain T_c
- Problem: Distinguishing between 1st and 2nd order transitions
- Have seen one of the important error contributions

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant
- 1st or 2nd Order?
- Histogram Peaks Failure of FSS Maxima at T_C Weak Transition
- Statistical Error

Summary

Questions?

Darko Pilav

Introduction

- Motivating the Scaling Function
- Scaling Function Hypothesis Interpretation
- Obtaining T_c Maximum of TD quantities Binder Cumulant Behaviour of ξ

1st or 2nd Order?

 $\begin{array}{l} \mbox{Histogram Peaks}\\ \mbox{Failure of FSS}\\ \mbox{Maxima at }T_C\\ \mbox{Weak Transition} \end{array}$

Statistical Error

Summary

Questions?

• I would like to thank Dr. Munehisa Matsumoto