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O(N) Model and 1/N Expansion

Introduction

O(N) model: N-dim spins in lattice of arbitrary dimensions
O(N) refers to invariance of Hamiltonian under O(N) group

Exactly solvable for N →∞

Goal: Find thermodynamic behaviour for physical N
How : by expanding in 1/N away from exact theory

Focus on large N limit
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The Model I

Ginzburg-Landau-Wilson Model:

1 2

H(φa, ∂µφ
a) =

︷ ︸︸ ︷
1

2
(∂µφ

a)2 +
1

2
µ2

0φ
aφa +

︷ ︸︸ ︷
λ0

8N
(φaφa)2 ; a = 1,...,N; µ = 1,...,d

H: essentially Landau free energy for N-dim spins

Field-Theoretical view:

1: Klein-Gordon (µ0 bare mass)
2: Interaction (λ0 > 0 bare coupling constant)
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The Model II

Ensemble: T = const; magnetic field components Ja = const.
Therefore

Z[β, Ja] = N
∫
Dφa exp

(
−

∫
[H− Ja(x)φa(x)] ddx

)
.

Introduce
W ≡ lnZ[β, Ja]

From either Z or W all the thermodynamic quantities can be calculated:
How?

Michael Kay O(N) Model and 1/N Expansion



O(N) Model and 1/N Expansion

Outline

1 The Model

2 Mathematical Background

Weak Coupling Expansion (brief)
Steepest Descent Method

3 Symmetry Breaking (leading order)

Effective Action
Dimension d = 1,2,3,4

4 1/N Expansion (main steps)

5 Renormalization and Critical Exponents

Calculations at leading order
Results for next-to-leading order

6 Concluding Remarks.

Michael Kay O(N) Model and 1/N Expansion



O(N) Model and 1/N Expansion

Mathematical Background

Two strategies

1 Weak Coupling Expansion

2 Steepest Descent Method

Keep in mind: we are looking for expansion in 1/N

References
L. H. Ryder, Quantum Field Theory, Cambridge University Press, 2005

J. Zinn-Justin, Path Integrals in Quantum Mechanics, Oxford University Press, 2005

Michael Kay O(N) Model and 1/N Expansion



O(N) Model and 1/N Expansion

Weak Coupling Expansion

Achieved by Taylor expanding the interaction term in Z:

Z[β, Ja] = exp

[
−

∫
ddxV

(
δ

δJa(x)

)]
Z0[β, J

a]

where V (φa) = λ0

8N (φaφa)2 and Z0 corresponds to λ0 = 0.

This method

provides expansion in λ0

8N

does not take into account number N of spin components

−→ leading terms in 1/N are infinite
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Steepest Descent Method I

Z[β, Ja] = N
∫
Dφa exp

(
−

∫
[H− Ja(x)φa(x)] ddx

)
.

Assumptions:

φaφa ∼ N

JaJa ∼ N

∴ H ∼ N

and H− Jaφa is a functional of the general form A/κ
where κ ≡ 1/N

∴ Z[κ] =
∫ Dφa exp

[− ∫
ddxA(φa(x))/κ

]
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Steepest Descent Method II

For simplicity A ≡ A(x) where x ∈ R and Z → I

I(κ) =

∫ b

a

dx exp (−A(x)/κ) ;

require A(x) real analytic function in [a, b]

Approximate I(κ) for κ→ 0+

∴ look for absolute minimum of A: A(xc) with xc ∈ (a, b).
For vanishingly small κ

I(κ) ≈ Iε(κ) = exp (−A(xc)/κ)

∫ xc+ε

xc−ε

dx exp(−A′′(xc)x
2/κ)

where ε sufficiently small.
Note: Actual range of integration ∼ 1/

√
κ
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Steepest Descent Method III

Change of variables x 7−→ y ≡ (x − xc)/κ

A/κ = A(xc)/κ+
1

2
A′′(xc)y

2 +
1

6

√
κA′′′(xc)y

3 +
1

24
κA(4)(xc)y

4 +O(κ3/2)

At leading order in κ: I = Iε.
Let range of integration →∞

I(κ) ≈
√

2πκ/A′′(xc) exp (−A(xc)/κ)

Include all orders by expanding the exponential that multiplies the
gaussian measure:

I(κ) =
√

2πκ/A′′(xc) exp (−A(xc)/κ)J (κ)

where

J (κ) = 1 +
∞∑

n=1

Jnκ
n; Jn = gaussian averages.

This is exactly the 1/N expansion we were looking for!!!
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Symmetry Breaking

Aim: Establish whether spontaneous symmetry breaking occurs at
leading order in 1/N for 1,2,3,4 space(lattice) dimensions

∴ look for 〈φa〉Ja in the thermodynamic limit, as Ja → 0.

For conventional purposes rename:

〈φa〉Ja ≡ φa

and
〈φa〉Ja→0 ≡ 〈φa〉
References
L.H. Ryder, Quantum Field Theory, Cambridge University Press, 2005
S.Coleman, R.Jackiw and H.D. Politzer, Phys. Rev. D10, 2491-2499 (1974)

L.F. Abbott, J.S. Kang and H. J. Schnitzer, Phys. Rev. D13, 2212-2226 (1976)
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The Effective Action I

Define effective action Γ (Legendre transformation of W):

Γ[φa] =W[Ja]−
∫

ddxφa(x)Ja(x)

∴ δΓ

δφa(x)

∣∣∣∣
〈φa〉

= 0

→ Equilibrium in vanishing external field corresponds to extremum of Γ

Demand uniform distribution of spins at equilibrium (i.e. φa(x) = const)

Define effective potential V (φa):

V (φa) ≡ − 1

Ω
Γ(φa)

where Ω is the volume of space (lattice)

Michael Kay O(N) Model and 1/N Expansion



O(N) Model and 1/N Expansion

The Effective Action II

Still have to check whether extremum is maximum or minimum!
Calculate the Hessian of V at 〈φa〉:

∂2V

∂φa∂φb
= −Γ

(2)
ab (~pi = 0) =

(
G

(2)
ab (~pi = 0)

)−1

≡ M2
ab

where M2
ab is the squared mass tensor.

∴ M2
ab > 0 : equilibrium
< 0 : no equilibrium → tachyons

Note: M2
ab ←→ (χab)

−1; χab = susceptibility
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Effective Potential at leading order I

Introduce auxiliary field χ then at leading order

V (φa, χ) = − N

2λ0
χ2 +

1

2
χφ2 +

Nµ2
0

λ0
χ+

1

2
N

∫
ddk

(2π)d
ln(k2 + χ)

The extrema of V are now determined by the following two equations:

∂V

∂χ
= 0 and

∂V

∂φa
= 0
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Effective Potential at leading order II

∂V

∂χ
= 0→

φ2 =
2N

λ0
χ− 2Nµ2

0

λ0
− N

∫
ddk

(2π)2
1

k2 + χ

yielding
dV

dφ2
=
∂V

∂φ2
+
∂V

∂χ

∂χ

∂φ2
=

1

2
χ

∂V

∂φa
= 0→

dV

dφ2
φa = 0

∴ symmetry breaking if ∃ φ2 > 0 with χ = 0.
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Dimension d=1

Theory non divergent
µ2 = µ2

0 and λ = λ0

φ2 =
2N

λ
χ− 2Nµ2

λ
− N

2
√
χ

Recall: look for positive φ2 at χ = 0. Here impossible!

∴ minimum at φ2 = 0

No symmetry breaking for d = 1!
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Dimension d=2

Need for renormalization:

µ2

λ
≡ µ2

0

λ0
+

1

2

∫
d2k

(2π)2
1

k2 + M2
and λ ≡ λ0

where M2 is a regularization parameter with dimensions of mass squared.

We derive

φ2 =
2N

λ
χ− 2Nµ2

λ
+

N

4π
ln(χ/M2)

for any positive value of M2 no φ2 > 0 for χ = 0.

No symmetry breaking for d = 2!
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Dimension d=3

Need for renormalization:

µ2

λ
≡ µ2

0

λ0
+

1

2

∫
d3k

(2π)3
1

k2
and λ ≡ λ0

yielding

φ2 =
2N

λ
χ− 2Nµ2

λ
+

N

4π

√
χ;

demand λ > 0 (because λ0 > 0).
Two cases:

1 µ2 > 0: minimum at φ2 = 0
2 µ2 < 0: positive φ2 for χ = 0 at

φ2 = −2Nµ2

λ

To the right of the minimum V monotonically increasing and convex.
To the left of the minimum V complex: unphysical.

Symmetry breaking exists for d = 3!
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Dimension d=4 I

Requires a more careful analysis.
Coleman et al. (1974) predict symmetry breaking, but analysis of
correlation functions reveals appearence of tachyons!
Dilemma resolved by Abbott et al. (1976).

Required renormalization:

µ2

λ
≡ µ2

0

λ0
+

1

2

∫
d4k

(2π)4
1

k2
,

1

λ
=

1

λ0
+

1

2

∫
d4k

(2π)4
1

k2(k2 + M2)

∴ χ = µ2 +
λ

2

(
φ2

N

)
+

λ

32π2
χ ln(χ/M2)
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Dimension d=4 II

Renormalization invariant quantities identified:

µ2/λ

χ0 ≡ M2 exp(32π2/λ).

Define ρ through: χ(φ2) = ρ(φ2)χ0

The equation
∂V

∂χ
= 0 takes the form

ρ ln ρ = −32π2

χ0

(
µ2

λ

)
− 16π2

χ0

(
φ2

N

)

Michael Kay O(N) Model and 1/N Expansion



O(N) Model and 1/N Expansion

Dimension d=4 III

Existence of branch point! φb:

φ2
b

N
=
χ0 e−1

16π2
− 2

(
µ2

λ

)

such that

∀ φ2 > φ2
b: ImV (φ2) 6= 0

∀ 0 < φ2 < φ2
b: V double valued function of φ2

Further analysis shows that for any value of µ2

λ the symmetric branch is
below the asymmetric one.

No symmetry breaking for d = 4!
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1/N expansion I

Goal: calculate critical exponents in three dimensions

Rewrite our Hamiltonian as:

H(φa, ∂µφ
a) =

1

2
(∂µφ

a)2 +
1

2
t0φ

aφa +
λ0

8N
(φaφa)2; a = 1,...,N; µ = 1,...,d

with
µ2

0 → t0

Reference

I.D. Lawrie and D.J. Lee, Phys. Rev. B64, 184505:1-11 (2001)
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1/N expansion II

Rewrite partition function using a Hubbard-Stratanovich transformation:

Z[Ja] = N
∫
DΨexp

[
−NHeff +

1

2

∫
d3r

∫
d3r ′Ja(r)∆(r, r’; Ψ)Ja(r’)

]

where

Heff [Ψ] =

∫
d3r

1

λ0
Ψ2(r)− 1

2
Tr ln ∆(r, r’; Ψ)

and ∆ (propagator of φ field) defined by

[−∇2 + t0 + iΨ(r)]∆(r, r’; Ψ) = δ(r− r’)
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1/N expansion III

Introduce inverse susceptibility t̃0 ≡ −Γ(2)(0) =
(
G (2)(0)

)−1

and expand about 〈Ψ(r)〉.
Apply steepest descent method:
change variables Ψ→ ψ:

Ψ(r) = −i

(
t̃0 − t0 − 1

N
δ

)
+ N−1/2ψ(r)

and require 〈ψ(r)〉 = 0

Michael Kay O(N) Model and 1/N Expansion



O(N) Model and 1/N Expansion

1/N expansion IV

After enough hard work... (use Feynman diagrams and see report)
From 〈ψ(r)〉 = 0 → constraint equation:

t0 = t̃0 − λ0

2

∫
d3k

(2π)3
∆(k)

+ N−1

[
λ0

8
A(t̃0, λ0)− λ0Σ(0; t̃0, λ0)D(0)−1

]

+ O(N−2)

where Σ(p; t̃0, λ0) = 1
2

∫
d3k

(2π)3 ∆(k + p)D(k)

and A(t̃0, λ0) =
∫

d3k
(2π)3

d3k′
(2π)3 ∆(k)2∆(k’)D(k + k’)
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1/N expansion V

...and correlation functions

Γ(2)(p) = p2 + t̃0 + N−1[Σ(p; t̃0, λ0)− Σ(0; t̃0, λ0)]

and
Γ(4)(0) = N−1D(0) + O(N−2)
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Renormalisation & critical exponents at leading order I

At leading order constraint equation yields

t0 − t0c = t̃0 + 2aλ0t̃
1/2
0

where

t0c = −λ0

2

∫
d3k

(2π)3
1

k2
and a ≡ 1/(16π).

Apply the most general renormalization scheme:

λ0 = mZλ(λ)λ

t0 − t0c = m2Zt(λ)t

t̃0 = m2t̃

Reference

I.D. Lawrie and D.J. Lee, Phys. Rev. B64, 184505:1-11 (2001)
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Renormalisation & critical exponents at leading order II

Apply normalization conditions

Γ(2)(p2 = 0, t = 1) = m2

lim
N→∞

NΓ(4)(pi = 0, t = 1) = mλ

which define the renormalization functions Zλ and Zt :

Zλ(λ) = (1− aλ)−1 =
z + a

z

Zt(λ) =
1 + aλ

1− aλ
=

z + 2a

z

where z ≡ λ−1 − a
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Renormalization & critical exponents at leading order III

Consider

(t0 − t0c )(λ0, t̃0) = m2

(
1 +

2a

z

)
t(z , t̃)

∴ renormalization-group equation

[
z
∂

∂z
− 2t̃

∂

∂ t̃
+ 2− 2a

z + 2a

]
t(z , t̃) = 0

By solving this equation we obtain the scaling relations: How?
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Renormalization & critical exponents at leading order IV

Method of Characteristics consider following diff. eq.

a(x , y)ux + b(x , y)uy = c(x , y)

define: F (x , y , z) = u(x , y)− z = 0
∴ characteristic equations:

dx

dl
= a(x , y);

dy

dl
= b(x , y);

dz

dl
= c(x , y)

plug back in our functions and obtain:

z(l) = zl ; t̃(l) = t̃ l−2; t(z(l), t̃(l)) = l

(
zl + 2a

z + 2a

)

defining t̃(l) = 1, critical point corresponds to l → 0

∴ t̃(l) ∼ t̃ l−2−η = t̃ l−2 and t(l) ∼ tl1/ν = tl
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Results for critical exponents

Our calculated values (leading order):

η = 0; ν = 1; γ = (2− η)ν = 2

Results at next-to-leading order:

η = 8(3π2N)−1 + O(N−2)

ν = 1− 32(3π2N)−1 + O(N−2)

γ = 2(1− 12(π2N)−1) + O(N−2)
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Concluding Remarks

What have we learnt?

Methods

to identify symmetry breaking

to develop 1/N expansion

to calculate critical exponents using RG
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