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Introduction

O(N) model: N-dim spins in lattice of arbitrary dimensions
O(N) refers to invariance of Hamiltonian under O(N) group

m Exactly solvable for N — oo

Goal: Find thermodynamic behaviour for physical N
How : by expanding in 1/N away from exact theory

m Focus on large N limit
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The Model |

Ginzburg-Landau-Wilson Model:
1 2

1 1 A
H((ba’ 8H¢a) = E(aﬂ¢a)2 + 5M3¢a¢a + 87,(\)/(¢a¢a)2 ja=1...Nypu=1,.d

m H: essentially Landau free energy for N-dim spins
m Field-Theoretical view:

m 1: Klein-Gordon (po bare mass)
m 2: Interaction (Ao > 0 bare coupling constant)
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The Model Il

Ensemble: T = const; magnetic field components J? = const.
Therefore

Z[B, =N / D¢? exp (— / [H — J2(x)¢?(x)] ddx> .

Introduce
W =1InZ[3, S

From either Z or W all the thermodynamic quantities can be calculated:
How?
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Mathematical Background

Two strategies

Weak Coupling Expansion
Steepest Descent Method

Keep in mind: we are looking for expansion in 1/N

References
L. H. Ryder, Quantum Field Theory, Cambridge University Press, 2005

J. Zinn-Justin, Path Integrals in Quantum Mechanics, Oxford University Press, 2005
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Weak Coupling Expansion

Achieved by Taylor expanding the interaction term in Z:

Z[B,J%] = exp [— / d¥xVv (M‘S(X)” 203, J7]

where V(¢?) = é‘—,‘\’l(gbagba)z and Z; corresponds to \g = 0.

This method
m provides expansion in é\—,‘\’l
m does not take into account number N of spin components

— leading terms in 1/N are infinite
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Steepest Descent Method |

Z[B, )= N / D¢? exp (— / [H — J2(x)0?(x)] ddx) .
Assumptions:
m PP ~ N
m Sl ~N
SHA~N

and H — J?¢? is a functional of the general form A/k
where k = 1/N

- Z[k] = [ D¢ exp [~ [ dIxA(¢?(x))/~]
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Steepest Descent Method ||

For simplicity A = A(x) where x e Rand Z2 -7

/ dx exp (—A(x) k) :

require A(x) real analytic function in [a, b]

Approximate Z (k) for kK — 0%
*. look for absolute minimum of A: A(x.) with x. € (a, b).
For vanishingly small x
Xcte
I(k) = Z.(k) = exp (—A(xc)//-i)/ dx exp(—A"(x)x*/ k)

c—€

where ¢ sufficiently small.
Note: Actual range of integration ~ 1/\/k
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Steepest Descent Method Il

Change of variables x — y = (x — x)/k
1 1 1
Alk = A(xc)/k+ EA”(xc)y2 + 6\/EA”’(XC)y3 + ﬂIiA(“)(XC)y‘l +0(K%/?)

At leading order in k: Z = Z..
Let range of integration — oo

I(r) = 2w/ A" (xc) exp (—A(xc)/K)

Include all orders by expanding the exponential that multiplies the
gaussian measure:

(k) = /275 A7 (xc) exp (—A(xe) /) T (<)
where

o0
J(k) =1+ Z Jok"; Jp = gaussian averages.
n=1

This is exactly the 1/N expansion we were looking for!!!
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Symmetry Breaking

Aim: Establish whether spontaneous symmetry breaking occurs at
leading order in 1/N for 1,2,3,4 space(lattice) dimensions

.. look for (¢?) j= in the thermodynamic limit, as J* — 0.

For conventional purposes rename:

(97)se = o7

and
(97)s1—0 = (¢7)

References
L.H. Ryder, Quantum Field Theory, Cambridge University Press, 2005
S.Coleman, R.Jackiw and H.D. Politzer, Phys. Rev. D10, 2491-2499 (1974)

L.F. Abbott, J.S. Kang and H. J. Schnitzer, Phys. Rev. D13, 2212-2226 (1976)
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The Effective Action |

Define effective action I' (Legendre transformation of W):
o) = WIF] = [ dx? () (0

or
02(x) | (o)

— Equilibrium in vanishing external field corresponds to extremum of I’

Demand uniform distribution of spins at equilibrium (i.e. ¢?(x) = const)
Define effective potential V/(¢?):
V(") =~ aT(6")
Q
where Q is the volume of space (lattice)
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The Effective Action Il

Still have to check whether extremum is maximum or minimum!
Calculate the Hessian of V at (¢?):

PV @ v (@D g2
8¢aa¢b - _rab (p’ - 0) - (Gab (pl - 0)) = Mab

where M2 is the squared mass tensor.
- M2, >0 : equilibrium

< 0 : no equilibrium — tachyons

Note: M2, «— (xab)'; Xab = susceptibility
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Effective Potential at leading order |

Introduce auxiliary field x then at leading order

N 1 N2 1 d9k
V(6% x) = —s X2+ =x¢* + —2 7N/ In(k?
(Y g X +oxg" N X2 2m)7 n(k* +x)

The extrema of V are now determined by the following two equations:
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Effective Potential at leading order [l

ov
_— = 0 —
Ix
¢2:@X_2Nug - / dik 1
Ao Ao (27T)2 k2+x
yielding
dv _ov _ovox 1
de?z 92 " ax g2 2X
oV
=0
g -

dv .,
d2” =0

.. symmetry breaking if 3 ¢*> > 0 with y = 0.
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Dimension d=1

Theory non divergent
w2 =p3and A = X\g

2N 2Ng2 N
TN TN T2

Recall: look for positive ¢? at y = 0. Here impossible!

¢2

. minimum at ¢> =0

No symmetry breaking for d = 1!
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Dimension d=2

Need for renormalization:

N =

Wl d’k 1
7o ———and A =\
Y / @rEkzy mE " 0

where M2 is a regularization parameter with dimensions of mass squared.

We derive
2N 2Nu
2—7
L W

for any positive value of M? no ¢? > 0 for y = 0.

+—| (x/M?)

No symmetry breaking for d = 2!
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Dimension d=3

Need for renormalization:

2 2 3
2@ 1 [ Pkl _
B 1 L and A=
X e 2 / R 0

yielding ,

2N 2N N
(ZSZZTX— /\M "‘E\/;(;
demand X\ > 0 (because Ay > 0).
Two cases:

,u2 > 0: minimum at ¢2 =0

A 1> < 0: positive ¢? for y = 0 at

2N 2
2 _ .
o= A

To the right of the minimum V monotonically increasing and convex.
To the left of the minimum V complex: unphysical.

Symmetry breaking exists for d = 3!
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Dimension d=4 |

Requires a more careful analysis.

Coleman et al. (1974) predict symmetry breaking, but analysis of
correlation functions reveals appearence of tachyons!

Dilemma resolved by Abbott et al. (1976).

Required renormalization:

21 [ d* 1

o 2 (2m)* k2

lal
A

1_i+1/ d*k 1
X o 2) @rF k(e + MR)

2 A
=i+ (%) + g m)
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Dimension d=4 Il

Renormalization invariant quantities identified:
m 2/
m Yo = M?exp(3272/)).

Define p through: x(¢?) = p(¢?)xo0

ov
The equation — = 0 takes the form

x

In _7327r2 (u2> B 1672 <¢2>
pne Xo \ A Xo \ N
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Dimension d=4 Il|

Existence of branch point! ¢p:

(ﬁ’zxoe_l _2</‘L2>

N 1672

such that
BV 2> ImV(¢?) £0
m V0 < ¢? < ¢?: V double valued function of ¢?

2
Further analysis shows that for any value of & the symmetric branch is
below the asymmetric one.

No symmetry breaking for d = 4!
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1/N expansion |

Goal: calculate critical exponents in three dimensions

Rewrite our Hamiltonian as:
a ay _ 1 a\2 1 a,a Ao aa\2.
H(0%,0,07) = 5(0u6") + 580076 + 22 (76)% a = LowNs 1= 1,d

with
115 — to
Reference
I.D. Lawrie and D.J. Lee, Phys. Rev. B64, 184505:1-11 (2001)
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1/N expansion |l

Rewrite partition function using a Hubbard-Stratanovich transformation:
1
Z[7] :N/D\I! exp [—Nh/effJr §/c/3r/d3r’J='*(r)A(r, rw)JA(r)

where ) )
Her[V] = /d3f)\*“’2(f) — 5 TrnArr; W)
0

and A (propagator of ¢ field) defined by

[~V2 4+ to + iW(N)]A(r, ;W) = 6(r — 1)
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1/N expansion I

Introduce inverse susceptibility 7y = —?(0) = (G(2)(O))71
and expand about (W(r)).

Apply steepest descent method:
change variables ¥ — 1):

W(r) = —i <%0 —to— Ib&) + N7H2(r)

and require (¥(r)) =0
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1/N expansion IV

After enough hard work... (use Feynman diagrams and see report)
From (1(r)) = 0 — constraint equation:

Y d3k

ty = t0—7 WA(k)
+ N [/:30 A(fo, Ao) — AoX(0; Fo, Ao) D(0) "
+ O(N‘2)

where ¥ (p; tp, \o) = 2f A (k + p)D(k)

and A(fy, o) = [ 2k Zif); (K)2A(K)D(k + k')
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1/N expansion V

...and correlation functions
r®(p) = p> + & + N [Z(p: T, Ao) — X(0; T, Ao)]

and
r®) = N"1D(0) + O(N~2?)
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Renormalisation & critical exponents at leading order |

At leading order constraint equation yields
to — to, = Fp + 2aXoEy/?
where N B 1
to, = 2 / Gy aud 2= 1/(167).

Apply the most general renormalization scheme:

)\0 = mZ)\()\)A
to—to, = m*Z(\)t
'i'o = m2f

Reference
I.D. Lawrie and D.J. Lee, Phys. Rev. B64, 184505:1-11 (2001)
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Renormalisation & critical exponents at leading order |l

Apply normalization conditions

r(2)(p2 =0,t=1) = m?
lim NF®(p, =0,t=1) = m\

N—oo

which define the renormalization functions Zy and Z;:

Z0) = (-ay =212
l1+a\ z+2a
() = 173)\: z
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Renormalization & critical exponents at leading order Il|

Consider )
(to — toc)()\o, ’Z'o) = m2 (1 + za) t(Z, ’Z‘)

.. renormalization-group equation

0 .0 2a ~

By solving this equation we obtain the scaling relations: How?
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Renormalization & critical exponents at leading order 1V

Method of Characteristics consider following diff. eq.

a(X’)/)UX + b(X>Y)Uy = C(Xa}/)

define: F(x,y,z) =u(x,y)—z=0
.. characteristic equations:

dx o ody ) E_
E - a(va)v E - b(X,y), dl *C(va)

plug back in our functions and obtain:

z2() =z, F) =12 t(z(/),%(/)):/(

defining (/) = 1, critical point corresponds to / — 0
I ~EH2"=%"2  and t(/) ~tM" =t
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Results for critical exponents

Our calculated values (leading order):
n=0  v=Ly=Q2-nr=2
Results at next-to-leading order:
n=8(3m?N)~t + O(N~2)
v=1-32(3r2N)"! + O(N7?)
v =2(1-12(x*N)~1) + O(N?)
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Concluding Remarks

What have we learnt?

Methods
m to identify symmetry breaking
m to develop 1/N expansion

m to calculate critical exponents using RG
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