Landau Theory, Fluctuations & Break Down of Landau Theory

Raphael Honegger

Supervisor: Dr. Andrey Lebedev Prof. Matthias Troyer & Dr. Philippe de Forcrand

ETH Zürich

Spring Term 2007 - LaTeX Slides

- 1 Introduction
 - Second Order Phase Transitions
 - Order Parameter
 - Bragg-Williams Theory
- 2 Landau Theory
 - Power Series about the critical Point
 - External Field
 - The Minima
 - Critical Behavior
- 3 Fluctuations
 - Fluctuations in the Order Parameter
 - The Correlation Length
 - The Ginzburg Criterion
 - Landau Theory in higher Dimensions
- 4 Conclusive Words

- 1 Introduction
 - Second Order Phase Transitions
 - Order Parameter
 - Bragg-Williams Theory
- 2 Landau Theory
 - Power Series about the critical Point
 - External Field
 - The Minima
 - Critical Behavior
- 3 Fluctuations
 - Fluctuations in the Order Parameter
 - The Correlation Length
 - The Ginzburg Criterion
 - Landau Theory in higher Dimensions
- 4 Conclusive Words

Two Types of Phase Transitions

We distinguish:

■ First order phase transitions: Transition occurs as an abrupt change in symmetry.

Examples:

■ Melting or boiling water

Two Types of Phase Transitions

We distinguish:

- First order phase transitions: Transition occurs as an abrupt change in symmetry.
- Second order phase transitions: Symmetry is changed in a continuous way.

Examples:

- Melting or boiling water
- Body center cubic lattice

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

Describing the Transition

Second order phase transitions due to a continuous change in symmetry can be described with an order parameter η with the properties:

 \blacksquare η is zero for the phase of higher symmetry,

Describing the Transition

Second order phase transitions due to a continuous change in symmetry can be described with an order parameter η with the properties:

- \blacksquare η is zero for the phase of higher symmetry,
- η takes non-zero values (positive or negative) for the "asymmetric" phase,

Describing the Transition

Second order phase transitions due to a continuous change in symmetry can be described with an order parameter η with the properties:

- \blacksquare η is zero for the phase of higher symmetry,
- η takes non-zero values (positive or negative) for the "asymmetric" phase,
- \blacksquare for second order phase transitions, η is a continuous function of temperature.

Some concrete examples for different types of second order phase transitions:

■ BaTiO₃: $\eta = d$

Some concrete examples for different types of second order phase transitions:

■ BaTiO₃: $\eta = d$

■ Totally ordered CuZn: $\eta = (\omega_{\rm Cu} - \omega_{\rm Zn})/(\omega_{\rm Cu} + \omega_{\rm Zn})$

Some concrete examples for different types of second order phase transitions:

■ BaTiO₃: $\eta = d$

- Totally ordered CuZn: $\eta = (\omega_{Cu} \omega_{Zn})/(\omega_{Cu} + \omega_{Zn})$
- Ferromagnet: $\eta = m$

Some concrete examples for different types of second order phase transitions:

■ BaTiO₃: $\eta = d$

- Totally ordered CuZn: $\eta = (\omega_{\rm Cu} \omega_{\rm Zn})/(\omega_{\rm Cu} + \omega_{\rm Zn})$
- Ferromagnet: $\eta = m$
- Anti-Ferromagnet: $\eta = m_{\text{sublattice}}$

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

Ising model:

$$U = \langle H \rangle = \sum_{i} H_{i} S_{i} - \sum_{i,j} J_{ij} S_{i} S_{j} - \sum_{i,j,k} K_{ijk} S_{i} S_{j} S_{k} - \dots$$

with $S_i = \pm 1$.

Ising model:

$$U = \langle H \rangle = \sum_{i} H_{i} S_{i} - \sum_{i,j} J_{ij} S_{i} S_{j} - \sum_{i,j,k} K_{ijk} S_{i} S_{j} S_{k} - \dots$$

with $S_i = \pm 1$.

Simplifications in Bragg-Williams theory:

$$H_i = K_{iik} = ... = 0$$

Ising model:

$$U = \langle H \rangle = \sum_{i} H_{i} S_{i} - \sum_{i,j} J_{ij} S_{i} S_{j} - \sum_{i,j,k} K_{ijk} S_{i} S_{j} S_{k} - \dots$$

with $S_i = \pm 1$.

Simplifications in Bragg-Williams theory:

- $H_i = K_{ijk} = ... = 0$
- lacksquare Only nearest neighbor interactions, with $J_{ij}=J$

Ising model:

$$U = \langle H \rangle = \sum_{i} H_{i} S_{i} - \sum_{i,j} J_{ij} S_{i} S_{j} - \sum_{i,j,k} K_{ijk} S_{i} S_{j} S_{k} - \dots$$

with $S_i = \pm 1$.

Simplifications in Bragg-Williams theory:

- $H_i = K_{iik} = ... = 0$
- lacksquare Only nearest neighbor interactions, with $J_{ij}=J$
- Replace S_i by position independent average $m = \langle S \rangle =: \eta$

Ising model:

$$U = \langle H \rangle = \sum_{i} H_{i} S_{i} - \sum_{i,j} J_{ij} S_{i} S_{j} - \sum_{i,j,k} K_{ijk} S_{i} S_{j} S_{k} - \dots$$

with $S_i = \pm 1$.

Simplifications in Bragg-Williams theory:

- $H_i = K_{iik} = ... = 0$
- lacksquare Only nearest neighbor interactions, with $J_{ij}=J$
- Replace S_i by position independent average $m = \langle S \rangle =: \eta$

Bragg Williams internal energy:

$$U = -J\sum_{\langle i,j\rangle}\eta^2 = -J\frac{Nz\eta^2}{2}$$

Entropy

For a given $\eta = m = (N_{\uparrow} - N_{\downarrow})/N$, the entropy is the logarithm of the number of configurations with a given number N_{\uparrow} :

$$S = \ln \binom{N}{N_{\uparrow}} = \ln \left(\frac{N!}{(N(1+\eta)/2)!(N(1-\eta)/2)!} \right)$$

Entropy

For a given $\eta = m = (N_{\uparrow} - N_{\downarrow})/N$, the entropy is the logarithm of the number of configurations with a given number N_{\uparrow} :

$$S = \ln \binom{N}{N_{\uparrow}} = \ln \left(\frac{N!}{(N(1+\eta)/2)!(N(1-\eta)/2)!} \right)$$

Sterling's Approximation for large N

$$ln(N!) \approx N(ln(N) - 1)$$

leads to

$$S = N\left(\ln(2) - \frac{1+\eta}{2}\ln(1+\eta) - \frac{1-\eta}{2}\ln(1-\eta)\right)$$

Entropy

For a given $\eta = m = (N_{\uparrow} - N_{\downarrow})/N$, the entropy is the logarithm of the number of configurations with a given number N_{\uparrow} :

$$S = \ln \binom{N}{N_{\uparrow}} = \ln \left(\frac{N!}{(N(1+\eta)/2)!(N(1-\eta)/2)!} \right)$$

Sterling's Approximation for large *N*

$$ln(N!) \approx N(ln(N) - 1)$$

leads to

$$S = N\left(\ln(2) - \frac{1+\eta}{2}\ln(1+\eta) - \frac{1-\eta}{2}\ln(1-\eta)\right)$$

Expanded for small η

$$S = N \left(\ln(2) - \frac{1}{2} \eta^2 - \frac{1}{12} \eta^4 - \dots \right)$$

Bragg-Williams free Energy

So we have the free energy and the entropy

$$U = -J\sum_{\langle i,j\rangle}\eta^2 = -J\frac{Nz\eta^2}{2}, \qquad \frac{S}{N} = \ln(2) - \frac{1}{2}\eta^2 - \frac{1}{12}\eta^4 - \dots$$

With this we can build:

Bragg-Williams free Energy per Site

$$\frac{F(T,\eta)}{N} \ = \ \frac{U-TS}{N} \ = \ -T \ln(2) + \frac{1}{2} \left(T-T_c\right) \eta^2 + \frac{1}{12} \, T \eta^4 + \dots$$

- 1 Introduction
 - Second Order Phase Transitions
 - Order Parameter
 - Bragg-Williams Theory
- 2 Landau Theory
 - Power Series about the critical Point
 - External Field
 - The Minima
 - Critical Behavior
- 3 Fluctuations
 - Fluctuations in the Order Parameter
 - The Correlation Length
 - The Ginzburg Criterion
 - Landau Theory in higher Dimensions
- 4 Conclusive Words

Initial Remark

In most cases, $T > T_c$ corresponds to the phase of higher symmetry. Our further discussion will only cover these cases.

Initial Remark

In most cases, $T > T_c$ corresponds to the phase of higher symmetry. Our further discussion will only cover these cases.

Example for an exception: Seignettesalz ($KNaC_4H_4O_6 \cdot 4H_2O$)

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

General Power Series

Assumption:

For small η , the free energy can be expanded in a power series in η

$$F(P, T, \eta) = F_0 + \alpha \eta + A \eta^2 + C \eta^3 + B \eta^4 + ...$$

where F_0 , α , A, C, B are functions of P and T.

General Power Series

Assumption:

For small η , the free energy can be expanded in a power series in η

$$F(P, T, \eta) = F_0 + \alpha \eta + A \eta^2 + C \eta^3 + B \eta^4 + ...$$

where F_0 , α , A, C, B are functions of P and T.

For given P and T, η is to be determined by minimizing F

$$\frac{\partial F(P,T,\eta)}{\partial \eta} = \alpha + 2A\eta + 3C\eta^2 + 4B\eta^3 = 0$$

Free energy and derivative:

$$F(P, T, \eta) = F_0 + \alpha \eta + A \eta^2 + C \eta^3 + B \eta^4$$

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = \alpha + 2A \eta + 3C \eta^2 + 4B \eta^3$$

Free energy and derivative:

$$F(P, T, \eta) = F_0 + \alpha \eta + A \eta^2 + C \eta^3 + B \eta^4$$

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = \alpha + 2A \eta + 3C \eta^2 + 4B \eta^3$$

■ $T > T_c$: $\alpha = 0$, because $\eta = 0$ has to be minimum

Free energy and derivative:

$$F(P, T, \eta) = F_0 + \alpha \eta + A \eta^2 + C \eta^3 + B \eta^4$$

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = \alpha + 2A \eta + 3C \eta^2 + 4B \eta^3$$

- $T > T_c$: $\alpha = 0$, because $\eta = 0$ has to be minimum
- $T < T_c$: $\alpha = 0$ for symmetry reason

Free energy and derivative:

$$F(P, T, \eta) = F_0 + \alpha \eta + A \eta^2 + C \eta^3 + B \eta^4$$

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = \alpha + 2A \eta + 3C \eta^2 + 4B \eta^3$$

- $T > T_c$: $\alpha = 0$, because $\eta = 0$ has to be minimum
- $T < T_c$: $\alpha = 0$ for symmetry reason

Property 1:

$$\alpha = 0$$

The Coefficient A(P, T)

Free energy derivatives:

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = 2A\eta + 3C\eta^2 + 4B\eta^3$$

$$\frac{\partial^2 F(P, T, \eta)}{\partial \eta^2} = 2A + 6C\eta + 12B\eta^2$$

The Coefficient A(P, T)

Free energy derivatives:

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = 2A\eta + 3C\eta^2 + 4B\eta^3$$
$$\frac{\partial^2 F(P, T, \eta)}{\partial \eta^2} = 2A + 6C\eta + 12B\eta^2$$

■ $T > T_c$: $A(P, T) \ge 0$, such that $\eta = 0$ is a minimum

The Coefficient A(P, T)

Free energy derivatives:

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = 2A\eta + 3C\eta^2 + 4B\eta^3$$
$$\frac{\partial^2 F(P, T, \eta)}{\partial \eta^2} = 2A + 6C\eta + 12B\eta^2$$

- $T > T_c$: $A(P, T) \ge 0$, such that $\eta = 0$ is a minimum
- $T < T_c$: $A(P, T) \le 0$, such that $\eta = 0$ is no minimum

Free energy derivatives:

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = 2A\eta + 3C\eta^2 + 4B\eta^3$$
$$\frac{\partial^2 F(P, T, \eta)}{\partial \eta^2} = 2A + 6C\eta + 12B\eta^2$$

- $T > T_c$: $A(P, T) \ge 0$, such that $\eta = 0$ is a minimum
- $T < T_c$: $A(P, T) \le 0$, such that $\eta = 0$ is no minimum

Property 2:

$$A(P, T) = 0$$
 at critical point

Free energy derivatives at critical point:

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = 3C\eta^2 + 4B\eta^3$$
$$\frac{\partial^2 F(P, T, \eta)}{\partial \eta^2} = 6C\eta + 12B\eta^2$$

Free energy derivatives at critical point:

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = 3C\eta^2 + 4B\eta^3$$
$$\frac{\partial^2 F(P, T, \eta)}{\partial \eta^2} = 6C\eta + 12B\eta^2$$

We require the critical point to be stable:

Free energy derivatives at critical point:

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = 3C\eta^2 + 4B\eta^3$$
$$\frac{\partial^2 F(P, T, \eta)}{\partial \eta^2} = 6C\eta + 12B\eta^2$$

We require the critical point to be stable:

■ Third derivative: zero

Free energy derivatives at critical point:

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = 3C\eta^2 + 4B\eta^3$$
$$\frac{\partial^2 F(P, T, \eta)}{\partial \eta^2} = 6C\eta + 12B\eta^2$$

We require the critical point to be stable:

- Third derivative: zero
- Fourth derivative: positive

Free energy derivatives at critical point:

$$\frac{\partial F(P, T, \eta)}{\partial \eta} = 3C\eta^2 + 4B\eta^3$$
$$\frac{\partial^2 F(P, T, \eta)}{\partial \eta^2} = 6C\eta + 12B\eta^2$$

We require the critical point to be stable:

- Third derivative: zero
- Fourth derivative: positive

Property 2:

$$C(P,T) = 0$$
, $B(P,T) > 0$ at critical point

There are two cases:

There are two cases:

 $C(P, T) \equiv 0$: A(P, T) = 0 determines transition curve

There are two cases:

- $C(P, T) \equiv 0$: A(P, T) = 0 determines transition curve
- $C(P, T) \not\equiv 0$: A(P, T) = 0 and C(P, T) = 0 generally determine transition point

There are two cases:

- $C(P, T) \equiv 0$: A(P, T) = 0 determines transition curve
- $C(P, T) \not\equiv 0$: A(P, T) = 0 and C(P, T) = 0 generally determine transition point

We're only interested in the first case.

There are two cases:

- $C(P, T) \equiv 0$: A(P, T) = 0 determines transition curve
- $C(P, T) \not\equiv 0$: A(P, T) = 0 and C(P, T) = 0 generally determine transition point

We're only interested in the first case.

Assumption:

$$C(P,T) \equiv 0$$

The discussion of the coefficients leads to

$$F(P, T, \eta) = F_0(P, T) + A(P, T)\eta^2 + B(P, T)\eta^4$$

The discussion of the coefficients leads to

$$F(P, T, \eta) = F_0(P, T) + A(P, T)\eta^2 + B(P, T)\eta^4$$

A(P,T) has no singularity at the transition point and can be expanded in terms of $(T-T_c)$:

The discussion of the coefficients leads to

$$F(P, T, \eta) = F_0(P, T) + A(P, T)\eta^2 + B(P, T)\eta^4$$

A(P,T) has no singularity at the transition point and can be expanded in terms of $(T-T_c)$:

Assumptions:

$$A(P,T) = a(P)(T-T_c)$$
 $B(P,T) = B(P,T_c)$

The discussion of the coefficients leads to

$$F(P, T, \eta) = F_0(P, T) + A(P, T)\eta^2 + B(P, T)\eta^4$$

A(P,T) has no singularity at the transition point and can be expanded in terms of $(T-T_c)$:

Assumptions:

$$A(P,T) = a(P)(T-T_c) \qquad B(P,T) = B(P,T_c)$$

Landau free Energy:

$$F(P, T, \eta) = F_0(P, T) + a(P)(T - T_c)\eta^2 + B(P)\eta^4$$

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

Applying an external Field

Applying an external Field h, we have to add a term $-hV\eta$ to the free energy:

Landau free Energy with external Field:

$$F_h(P, T, \eta) = F_0(P, T) + a(P)t\eta^2 + B(P)\eta^4 - hV\eta$$

Where we wrote $t := (T - T_c)$.

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

Derivative of free energy without external field

$$\frac{\partial F(P,T,\eta)}{\partial \eta} = (2a(P)t + 4B(P)\eta^2)\eta = 0$$

Derivative of free energy without external field

$$\frac{\partial F(P,T,\eta)}{\partial \eta} = (2a(P)t + 4B(P)\eta^2)\eta = 0$$

It follows:

■
$$t > 0$$
: Minimum at $\eta = 0$

Derivative of free energy without external field

$$\frac{\partial F(P,T,\eta)}{\partial \eta} = (2a(P)t + 4B(P)\eta^2)\eta = 0$$

It follows:

- t > 0: Minimum at $\eta = 0$
- t < 0: Two equivalent minima at

$$\eta = \pm \sqrt{\frac{a}{2B}(T_c - T)}$$

Free energy without external field for various temperatures:

Minima for $h \neq 0$

Derivative of free energy with external field

$$\frac{\partial F_h(P,T,\eta)}{\partial \eta} = (2a(P)t + 4B(P)\eta^2)\eta - hV = 0$$

Minima for $h \neq 0$

Derivative of free energy with external field

$$\frac{\partial F_h(P,T,\eta)}{\partial \eta} = (2a(P)t + 4B(P)\eta^2)\eta - hV = 0$$

Look at it as

$$(hV)(\eta) = 2at\eta + 4B\eta^3$$

Minima for $h \neq 0$, t > 0

For t > 0, the function $(hV)(\eta) = 2at\eta + 4B\eta^3$ looks like:

Minima for $h \neq 0$, t > 0

For t > 0, the function $(hV)(\eta) = 2at\eta + 4B\eta^3$ looks like:

Minima for $h \neq 0$, t > 0

For t > 0, the function $(hV)(\eta) = 2at\eta + 4B\eta^3$ looks like:

 \Rightarrow There is a unique solution $\eta \neq 0$.

Minima for $h \neq 0$, t < 0

For t < 0, $(hV)(\eta) = 2at\eta + 4B\eta^3$ will be of the form:

Minima for $h \neq 0$, t < 0

For t < 0, $(hV)(\eta) = 2at\eta + 4B\eta^3$ will be of the form:

Minima for $h \neq 0$, t < 0

For t < 0, $(hV)(\eta) = 2at\eta + 4B\eta^3$ will be of the form:

 \Rightarrow In a region $-h_t < h < h_t$, there are three solutions $\eta \neq 0$.

The characteristic Field h_t

We take the derivative of $(hV)(\eta)$

$$\frac{\partial (hV)}{\partial \eta} = 2at + 12B\eta^2 = 0$$

The characteristic Field h_t

We take the derivative of $(hV)(\eta)$

$$\frac{\partial (hV)}{\partial \eta} = 2at + 12B\eta^2 = 0$$

This has solutions

$$\eta = \pm \sqrt{\frac{2a(-t)}{12B}} = \pm \sqrt{\frac{a(-t)}{6B}}$$

The characteristic Field h_t

We take the derivative of $(hV)(\eta)$

$$\frac{\partial (hV)}{\partial \eta} = 2at + 12B\eta^2 = 0$$

This has solutions

$$\eta = \pm \sqrt{\frac{2a(-t)}{12B}} = \pm \sqrt{\frac{a(-t)}{6B}}$$

It follows

$$h_t = \frac{2at}{V} \left(\frac{a|t|}{6B} \right)^{1/2} + \frac{4B}{V} \left(\frac{a|t|}{6B} \right)^{3/2} = \left(\frac{2}{3} \right)^{2/3} \frac{a^{3/2}|t|^{3/2}}{VB^{1/2}}$$

The global Minimum for $-h_t < h < h_t$

We use

$$\frac{\partial}{\partial h}\Big|_{T}\left(2at\eta+4B\eta^{3}\right) = \left(\frac{\partial\eta}{\partial h}\right)_{T}\left(2at+12B\eta^{2}\right) = V$$

The global Minimum for $-h_t < h < h_t$

We use

$$\frac{\partial}{\partial h}\Big|_{T} \left(2at\eta + 4B\eta^{3}\right) = \left(\frac{\partial\eta}{\partial h}\right)_{T} \left(2at + 12B\eta^{2}\right) = V$$

to get

$$\left(\frac{\partial \eta}{\partial h}\right)_T \left(\frac{\partial^2 F_h(P,T,\eta)}{\partial \eta^2}\right) = V$$

The global Minimum for $-h_t < h < h_t$

We use

$$\frac{\partial}{\partial h}\Big|_{T}\left(2at\eta+4B\eta^{3}\right) = \left(\frac{\partial\eta}{\partial h}\right)_{T}\left(2at+12B\eta^{2}\right) = V$$

to get

$$\left(\frac{\partial \eta}{\partial h}\right)_T \left(\frac{\partial^2 F_h(P, T, \eta)}{\partial \eta^2}\right) = V$$

We use

$$\frac{\partial}{\partial h}\Big|_{T}\left(2at\eta+4B\eta^{3}\right) = \left(\frac{\partial\eta}{\partial h}\right)_{T}\left(2at+12B\eta^{2}\right) = V$$

to get

$$\left(\frac{\partial \eta}{\partial h}\right)_T \left(\frac{\partial^2 F_h(P, T, \eta)}{\partial \eta^2}\right) = V$$

■ *CD*: $(\partial \eta/\partial h)_T < 0 \rightarrow Maximum$

We use

$$\frac{\partial}{\partial h}\Big|_{T}\left(2at\eta+4B\eta^{3}\right) = \left(\frac{\partial\eta}{\partial h}\right)_{T}\left(2at+12B\eta^{2}\right) = V$$

to get

$$\left(\frac{\partial \eta}{\partial h}\right)_T \left(\frac{\partial^2 F_h(P,T,\eta)}{\partial \eta^2}\right) \ = \ V$$

- *CD*: $(\partial \eta/\partial h)_T < 0 \rightarrow Maximum$
- $BC: (\partial \eta/\partial h)_T > 0 \rightarrow Minimum$

We use

$$\frac{\partial}{\partial h}\Big|_{T} \left(2at\eta + 4B\eta^{3}\right) = \left(\frac{\partial \eta}{\partial h}\right)_{T} \left(2at + 12B\eta^{2}\right) = V$$

to get

$$\left(\frac{\partial \eta}{\partial h}\right)_T \left(\frac{\partial^2 F_h(P,T,\eta)}{\partial \eta^2}\right) \ = \ V$$

- *CD*: $(\partial \eta/\partial h)_T < 0 \rightarrow Maximum$
- $BC: (\partial \eta/\partial h)_T > 0 \rightarrow Minimum$
- EF: $(\partial \eta/\partial h)_T > 0 \rightarrow \text{global Minimum}$

We use

$$\frac{\partial}{\partial h}\Big|_{T}\left(2at\eta+4B\eta^{3}\right) = \left(\frac{\partial\eta}{\partial h}\right)_{T}\left(2at+12B\eta^{2}\right) = V$$

to get

$$\left(\frac{\partial \eta}{\partial h}\right)_T \left(\frac{\partial^2 F_h(P,T,\eta)}{\partial \eta^2}\right) \ = \ V$$

- *CD*: $(\partial \eta/\partial h)_T < 0 \rightarrow Maximum$
- $BC: (\partial \eta/\partial h)_T > 0 \rightarrow Minimum$
- $EF: (\partial \eta/\partial h)_T > 0 \rightarrow \mathsf{global} \; \mathsf{Minimum}$

 \Rightarrow The global minimum lies on the sections AB or EF.

Minima for $h \neq 0$

Free energy with an external field h > 0 for various temperatures:

From this can actually be seen that $\alpha = 0$ also for t < 0.

Results

Without external field:

- t > 0: Minimum at $\eta = 0$
- t < 0: Minima at $\eta \neq 0$

Results

Without external field:

- t > 0: Minimum at $\eta = 0$
- t < 0: Minima at $\eta \neq 0$

With an external field $h \neq 0$:

- t > 0: Minimum at $\eta \neq 0$
- t < 0: Minimum at $\eta \neq 0$

Interpretation:

The field breaks the symmetry and there is no more phase transition!

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

The specific Heat c_P

The Entropy near the critical point is given by

$$S = -\frac{\partial F(P, T, \eta)}{\partial T} = S_0 - \frac{\partial A(P, T)}{\partial T} \eta^2 \qquad \frac{\partial F}{\partial \eta} = 0$$

The specific Heat c_P

The Entropy near the critical point is given by

$$S = -\frac{\partial F(P, T, \eta)}{\partial T} = S_0 - \frac{\partial A(P, T)}{\partial T} \eta^2 \qquad \frac{\partial F}{\partial \eta} = 0$$

Using the equilibrium value $\eta^2 = \frac{a}{2B}(T_c - T)$, we get

$$S = \begin{cases} S_0 + \frac{a^2}{2B}(T - T_c), & T < T_c \\ S_0, & T > T_c \end{cases}$$

The specific Heat c_P

The Entropy near the critical point is given by

$$S = -\frac{\partial F(P, T, \eta)}{\partial T} = S_0 - \frac{\partial A(P, T)}{\partial T} \eta^2 \qquad \frac{\partial F}{\partial \eta} = 0$$

Using the equilibrium value $\eta^2 = \frac{a}{2B}(T_c - T)$, we get

$$S = \begin{cases} S_0 + \frac{a^2}{2B}(T - T_c), & T < T_c \\ S_0, & T > T_c \end{cases}$$

It follows

$$C_P = T \left(\frac{\partial S}{\partial T} \right)_P = \begin{cases} C_{P0} + \frac{a^2}{2B}T, & T < T_c \\ C_{P0}, & T > T_c \end{cases}$$

The Susceptibility χ

The susceptibility is defined as

$$\chi := \left(\frac{\partial \eta}{\partial h}\right)_{T:h\to 0} = \lim_{h\to 0} \frac{V}{2at + 12B\eta^2}$$

The Susceptibility χ

The susceptibility is defined as

$$\chi := \left(\frac{\partial \eta}{\partial h}\right)_{T:h\to 0} = \lim_{h\to 0} \frac{V}{2at + 12B\eta^2}$$

Using $\lim_{h \to 0} \eta^2 = 0$ for t > 0 and $\eta^2 = \frac{a}{2B}(T_c - T)$ for t < 0, we get

$$\chi \ = \ \left\{ \begin{array}{ll} \frac{V}{4a(T_c - T)}, & T < T_c \\ \frac{V}{2a(T - T_c)}, & T > T_c \end{array} \right.$$

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

Fluctuations in the Order Parameter

Mean Square Fluctuation

Consider
$$\eta \equiv \eta(\mathbf{r}) = \overline{\eta} + \Delta \eta(\mathbf{r})$$
.

Mean Square Fluctuation

Consider
$$\eta \equiv \eta(\mathbf{r}) = \overline{\eta} + \Delta \eta(\mathbf{r})$$
.

The probability ω for a fluctuation for constant P and T is given with the Gibbs distribution

$$\omega \sim \mathrm{e}^{-\frac{\Delta F}{k_B T}}$$

Mean Square Fluctuation

Consider
$$\eta \equiv \eta(\mathbf{r}) = \overline{\eta} + \Delta \eta(\mathbf{r})$$
.

The probability ω for a fluctuation for constant P and T is given with the Gibbs distribution

$$\omega \sim e^{-\frac{\Delta F}{k_B T}}$$

For small deviations from $\overline{\eta}$

$$\Delta F = \frac{1}{2} (\eta - \overline{\eta})^2 \left(\frac{\partial^2 F}{\partial \eta^2} \right)_{P,T} \qquad \left(\frac{\partial \eta}{\partial h} \right)_T \left(\frac{\partial^2 F}{\partial \eta^2} \right) = V$$

Mean Square Fluctuation

Consider $\eta \equiv \eta(\mathbf{r}) = \overline{\eta} + \Delta \eta(\mathbf{r})$.

The probability ω for a fluctuation for constant P and T is given with the Gibbs distribution

$$\omega \sim e^{-rac{\Delta F}{k_B T}}$$

For small deviations from $\overline{\eta}$

$$\Delta F = \frac{1}{2} (\eta - \overline{\eta})^2 \left(\frac{\partial^2 F}{\partial \eta^2} \right)_{P,T} \qquad \left(\frac{\partial \eta}{\partial h} \right)_T \left(\frac{\partial^2 F}{\partial \eta^2} \right) = V$$

We get for the mean square fluctuation

$$\omega \sim e^{-\frac{(\eta-\overline{\eta})^2V}{2\chi k_BT_c}} \Rightarrow \langle (\Delta\eta)^2 \rangle = \frac{k_BT_c\chi}{V}$$

Landau free Energy Density

For an inhomogeneous body, we write

$$F = \int \mathcal{F}(P, T, \eta(\mathbf{r})) d\mathbf{r}$$

Landau free Energy Density

For an inhomogeneous body, we write

$$F = \int \mathcal{F}(P, T, \eta(\mathbf{r})) d\mathbf{r}$$

In \mathcal{F} we also have add derivative terms

$$g_{ik}(P,T)\frac{\partial \eta}{\partial x_i}\frac{\partial \eta}{\partial x_k}$$

Landau free Energy Density

For an inhomogeneous body, we write

$$F = \int \mathcal{F}(P, T, \eta(\mathbf{r})) d\mathbf{r}$$

In \mathcal{F} we also have add derivative terms

$$g_{ik}(P,T)\frac{\partial \eta}{\partial x_i}\frac{\partial \eta}{\partial x_k}$$

Assuming that $g_{ik}=g\delta_{ik}$ with g>0, we get the Landau free energy density

$$\mathcal{F}(P,T,\eta) = \mathcal{F}_0(P,T) + \alpha t \eta^2 + b \eta^4 + g \left(\frac{\partial \eta}{\partial \mathbf{r}}\right)^2 - \eta h$$

where $\alpha = a/V$ and b = B/V.

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

The Helmholtz free energy ist given by

$$A = -k_B T \ln [Z(h(\mathbf{r}))]$$

where $Z(h(\mathbf{r}))$ is the partition function, given by

$$Z(h(\mathbf{r})) = \operatorname{Tr} \exp \left[-\frac{1}{k_B T} \left(H(\eta(\mathbf{r})) - \int d^d \mathbf{r} \, h(\mathbf{r}) \eta(\mathbf{r}) \right) \right]$$

The Helmholtz free energy ist given by

$$A = -k_B T \ln [Z(h(\mathbf{r}))]$$

where $Z(h(\mathbf{r}))$ is the partition function, given by

$$Z(h(\mathbf{r})) = \operatorname{Tr} \exp \left[-\frac{1}{k_B T} \left(H(\eta(\mathbf{r})) - \int d^d \mathbf{r} \, h(\mathbf{r}) \eta(\mathbf{r}) \right) \right]$$

The expectation value of $\eta(\mathbf{r})$ then can be obtained by

$$\langle \eta(\mathbf{r}) \rangle = -\frac{\delta A}{\delta h(\mathbf{r}')} = \lim_{\varepsilon \to 0} \frac{A(h(\mathbf{r}) + \varepsilon \delta(\mathbf{r} - \mathbf{r}')) - A(h(\mathbf{r}))}{\varepsilon}$$

Defining the generalized isothermal susceptibility by

$$\chi_T(\mathbf{r}, \mathbf{r}') = \frac{\delta \langle \eta(\mathbf{r}) \rangle}{\delta h(\mathbf{r}')}$$

we calculate the relation

$$\chi_T(\mathbf{r}, \mathbf{r}') = -\frac{\delta^2 A}{\delta h(\mathbf{r}) \delta h(\mathbf{r}')}$$

Defining the generalized isothermal susceptibility by

$$\chi_T(\mathbf{r}, \mathbf{r}') = \frac{\delta \langle \eta(\mathbf{r}) \rangle}{\delta h(\mathbf{r}')}$$

we calculate the relation

$$\chi_{T}(\mathbf{r}, \mathbf{r}') = -\frac{\delta^{2} A}{\delta h(\mathbf{r}) \delta h(\mathbf{r}')}$$

$$= k_{B} T \left(\frac{1}{Z} \frac{\delta^{2} Z}{\delta h(\mathbf{r}) \delta h(\mathbf{r}')} - \frac{1}{Z} \frac{\delta Z}{\delta h(\mathbf{r})} \cdot \frac{1}{Z} \frac{\delta Z}{\delta h(\mathbf{r}')} \right)$$

Defining the generalized isothermal susceptibility by

$$\chi_{\mathcal{T}}(\mathbf{r}, \mathbf{r}') = \frac{\delta \langle \eta(\mathbf{r}) \rangle}{\delta h(\mathbf{r}')}$$

we calculate the relation

$$\chi_{T}(\mathbf{r}, \mathbf{r}') = -\frac{\delta^{2} A}{\delta h(\mathbf{r}) \delta h(\mathbf{r}')}$$

$$= k_{B} T \left(\frac{1}{Z} \frac{\delta^{2} Z}{\delta h(\mathbf{r}) \delta h(\mathbf{r}')} - \frac{1}{Z} \frac{\delta Z}{\delta h(\mathbf{r})} \cdot \frac{1}{Z} \frac{\delta Z}{\delta h(\mathbf{r}')} \right)$$

$$= \frac{1}{k_{B} T} \left(\langle \eta(\mathbf{r}) \eta(\mathbf{r}') \rangle - \langle \eta(\mathbf{r}) \rangle \langle \eta(\mathbf{r}') \rangle \right)$$

Defining the generalized isothermal susceptibility by

$$\chi_T(\mathbf{r}, \mathbf{r}') = \frac{\delta \langle \eta(\mathbf{r}) \rangle}{\delta h(\mathbf{r}')}$$

we calculate the relation

$$\chi_{T}(\mathbf{r}, \mathbf{r}') = -\frac{\delta^{2} A}{\delta h(\mathbf{r}) \delta h(\mathbf{r}')}$$

$$= k_{B} T \left(\frac{1}{Z} \frac{\delta^{2} Z}{\delta h(\mathbf{r}) \delta h(\mathbf{r}')} - \frac{1}{Z} \frac{\delta Z}{\delta h(\mathbf{r})} \cdot \frac{1}{Z} \frac{\delta Z}{\delta h(\mathbf{r}')} \right)$$

$$= \frac{1}{k_{B} T} \left(\langle \eta(\mathbf{r}) \eta(\mathbf{r}') \rangle - \langle \eta(\mathbf{r}) \rangle \langle \eta(\mathbf{r}') \rangle \right)$$

$$= \frac{1}{k_{B} T} G(\mathbf{r}, \mathbf{r}')$$

with $G(\mathbf{r}, \mathbf{r}')$, the correlation function.

Now we take the functional derivative of the Landau free energy

$$\frac{\delta F}{\delta \eta(\mathbf{r})} = 2\alpha t \eta(\mathbf{r}) + 4b\eta^{3}(\mathbf{r}) + 2g\nabla^{2}\eta(\mathbf{r}) - h(\mathbf{r}) = 0$$

Now we take the functional derivative of the Landau free energy

$$\frac{\delta F}{\delta \eta(\mathbf{r})} = 2\alpha t \eta(\mathbf{r}) + 4b\eta^{3}(\mathbf{r}) + 2g\nabla^{2}\eta(\mathbf{r}) - h(\mathbf{r}) = 0$$

This has to be satisfied by $\langle \eta(\mathbf{r}) \rangle$, so

$$(2\alpha t + 12b\eta^{2}(\mathbf{r}) - 2g\nabla^{2})\chi_{T}(\mathbf{r}, \mathbf{r}') - \delta(\mathbf{r} - \mathbf{r}') = 0$$

Now we take the functional derivative of the Landau free energy

$$\frac{\delta F}{\delta \eta(\mathbf{r})} = 2\alpha t \eta(\mathbf{r}) + 4b\eta^{3}(\mathbf{r}) + 2g\nabla^{2}\eta(\mathbf{r}) - h(\mathbf{r}) = 0$$

This has to be satisfied by $\langle \eta(\mathbf{r}) \rangle$, so

$$(2\alpha t + 12b\eta^{2}(\mathbf{r}) - 2g\nabla^{2})\chi_{T}(\mathbf{r}, \mathbf{r}') - \delta(\mathbf{r} - \mathbf{r}') = 0$$

With the relation from before, this leads to

$$\frac{1}{k_BT} \left(2\alpha t + 12b\eta^2(\mathbf{r}) - 2g\nabla^2 \right) G(\mathbf{r} - \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}')$$

We have

$$\frac{1}{k_BT} \left(2\alpha t + 12b\eta^2(\mathbf{r}) - 2g\nabla^2 \right) G(\mathbf{r} - \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}')$$

and go back to the case $\eta(\mathbf{r}) \equiv \eta$ and use the equilibrium values $\eta^2 = 0$ for t > 0 and $\eta^2 = -at/2b$ for t < 0 to get

$$\left(\frac{1}{\xi^2(t)} - \nabla^2\right) G(\mathbf{r} - \mathbf{r}') = \frac{k_B T}{2g} \delta(\mathbf{r} - \mathbf{r}')$$

with

$$\xi(t) = \begin{cases} \left(\frac{g}{\alpha t}\right)^{1/2} & T > T_c \\ \left(\frac{g}{2\alpha(-t)}\right)^{1/2} & T < T_c \end{cases}$$

The correlation length $\xi(t)$

For

$$\left(\frac{1}{\xi^2(t)} - \nabla^2\right) G(\mathbf{r} - \mathbf{r}') = \frac{k_B T}{2g} \delta(\mathbf{r} - \mathbf{r}')$$

we use the Fourier Transform to get

$$\hat{G}(k) = \frac{k_B T}{2g} \frac{1}{k^2 + \xi^{-2}}$$

The correlation length $\xi(t)$

For

$$\left(\frac{1}{\xi^2(t)} - \nabla^2\right) G(\mathbf{r} - \mathbf{r}') = \frac{k_B T}{2g} \delta(\mathbf{r} - \mathbf{r}')$$

we use the Fourier Transform to get

$$\hat{G}(k) = \frac{k_B T}{2g} \frac{1}{k^2 + \xi^{-2}}$$

This is itself the Fourier Transform of the Yukawa Potential, multiplied by $k_BT/8\pi g$. So

$$G(\mathbf{r}) = \frac{k_B T}{8\pi g} \frac{e^{-\frac{r}{\xi}}}{r}$$

The correlation length $\xi(t)$

For

$$\left(\frac{1}{\xi^2(t)} - \nabla^2\right) G(\mathbf{r} - \mathbf{r}') = \frac{k_B T}{2g} \delta(\mathbf{r} - \mathbf{r}')$$

we use the Fourier Transform to get

$$\hat{G}(k) = \frac{k_B T}{2g} \frac{1}{k^2 + \xi^{-2}}$$

This is itself the Fourier Transform of the Yukawa Potential, multiplied by $k_BT/8\pi g$. So

$$G(\mathbf{r}) = \frac{k_B T}{8\pi g} \frac{e^{-\frac{r}{\xi}}}{r}$$

That's why we call $\xi(t)$ the correlation length.

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

The criterion for Landau Theory to be valid is

$$\left\langle (\Delta \eta)^2 \right\rangle_{\xi^3} \ = \ \frac{k_B T_c \chi}{\xi^3} \ \ll \ \frac{\alpha |t|}{2b} \ = \ \eta_0^{t<0}$$

The criterion for Landau Theory to be valid is

$$\langle (\Delta \eta)^2 \rangle_{\xi^3} = \frac{k_B T_c \chi}{\xi^3} \ll \frac{\alpha |t|}{2b} = \eta_0^{t<0}$$

Using the results $\chi=1/4\alpha|t|$ and $\xi=(g/2\alpha|t|)^{1/2}$ for t<0 from before, we get

$$\alpha |t| \gg \frac{k_B T_c^2 b^2}{g^3}$$

The criterion for Landau Theory to be valid is

$$\langle (\Delta \eta)^2 \rangle_{\xi^3} = \frac{k_B T_c \chi}{\xi^3} \ll \frac{\alpha |t|}{2b} = \eta_0^{t<0}$$

Using the results $\chi=1/4\alpha|t|$ and $\xi=(g/2\alpha|t|)^{1/2}$ for t<0 from before, we get

$$\alpha |t| \gg \frac{k_B T_c^2 b^2}{g^3}$$

Requiring $t \ll T_c$, this leads to

$$\frac{k_B^2 T_c b^2}{\alpha g^3} \ll 1$$

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

We could also formulate the criterion for Landau Theory to be valid for an arbitrary dimension \boldsymbol{d}

$$\frac{T_c \chi}{\xi^3} \ll \frac{\alpha |t|}{2b} \rightarrow \frac{T_c \chi}{\xi^d} \ll \frac{\alpha |t|}{2b}$$

We could also formulate the criterion for Landau Theory to be valid for an arbitrary dimension d

$$\frac{T_c \chi}{\xi^3} \ll \frac{\alpha |t|}{2b} \rightarrow \frac{T_c \chi}{\xi^d} \ll \frac{\alpha |t|}{2b}$$

This results in the Ginzburg Criterion

$$\frac{b}{g^{d/2}} k_B T_c \left(\alpha |t|\right)^{d/2-2} \ll 1$$

We could also formulate the criterion for Landau Theory to be valid for an arbitrary dimension d

$$\frac{T_c \chi}{\xi^3} \ll \frac{\alpha |t|}{2b} \rightarrow \frac{T_c \chi}{\xi^d} \ll \frac{\alpha |t|}{2b}$$

This results in the Ginzburg Criterion

$$\frac{b}{g^{d/2}} k_B T_c \left(\alpha |t|\right)^{d/2-2} \ll 1$$

So we get:

 \blacksquare d > 4: The criterion can always be satisfied near the critical point,

We could also formulate the criterion for Landau Theory to be valid for an arbitrary dimension \boldsymbol{d}

$$\frac{T_c \chi}{\xi^3} \ll \frac{\alpha |t|}{2b} \rightarrow \frac{T_c \chi}{\xi^d} \ll \frac{\alpha |t|}{2b}$$

This results in the Ginzburg Criterion

$$\frac{b}{g^{d/2}} k_B T_c (\alpha |t|)^{d/2-2} \ll 1$$

So we get:

- \bullet d > 4: The criterion can always be satisfied near the critical point,
- $\mathbf{d} = 4$: The criterion is either satisfied or not for any temperature.

1 Introduction

- Second Order Phase Transitions
- Order Parameter
- Bragg-Williams Theory

2 Landau Theory

- Power Series about the critical Point
- External Field
- The Minima
- Critical Behavior

3 Fluctuations

- Fluctuations in the Order Parameter
- The Correlation Length
- The Ginzburg Criterion
- Landau Theory in higher Dimensions
- 4 Conclusive Words

■ Bragg-Williams Theory

- Bragg-Williams Theory
- Landau Theory: Generalization

- Bragg-Williams Theory
- Landau Theory: Generalization
- Fluctuations: Ginzburg criterion

Conclusive Prorus

- Bragg-Williams Theory
- Landau Theory: Generalization
- Fluctuations: Ginzburg criterion
- Quantitatively wrong predictions, but good qualitative description

- Bragg-Williams Theory
- Landau Theory: Generalization
- Fluctuations: Ginzburg criterion
- Quantitatively wrong predictions, but good qualitative description
- d > 4: Ginzburg criterion satisfied