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Critical exponents

Summery of the critical exponents for a magnetic system

P T-T. b H
Tc kB Tc
Exponent  Definition Description

« Cy ~ |t|7 specific heat at H =0
I} M ~ |t|® magnetization at H =0
~ X ~ |t|77 isothermal susceptibility at H =0
) M ~ h# critical isotherm
v &~ |t|7Y correlation length
n G (r) ~ |r|~(4=2t7)  correlation function

» Fundamental thermodynamics = Exponent inequalities such as

a+28+v>2 (Rushbrooke)



Critical exponents

The critical exponent A of a function f (t) is

= lim Inf(t)
t—0 |nt

» The function f(t) near critical temperature T¢ (t — 0) is
dominated by t

=t describes f(t) at the transition.



The scaling hypothesis

» The singular part of the free energy density f is a
homogeneous function near a second-order phase transition.

Homogeneous functions
1dim f(Ar)=g(\)f(r)
the scaling factor g is of the from g (\) = AP

ndim f(\F) =g\ f(F)

Generalized homogeneous functions

(i) M (x,y)=f (/\ax, )\by) &
(i) AF(x,y) = f (Ax, APy)



The scaling hypothesis

» The singular part of the free energy density f is a
homogeneous function near a second-order phase transition.

» The reduced temperature t and the order parameter h rescale
by different factors.

f(t,h) = b 9f (bt, b h)

» If f is a homogeneous function then also its Legendre
transform

= all thermodynamical potentials are homogeneous.



Derivation of the scaling relations |

The scaling hypothesis postulates that the free energy is
homogeneous
f(t,h) = b 9f (b"t, b h)

1
Let: b= |t]»

d _Yh
= f(t,h):\t\ytf(jzl,\t\ nh)

= F(e ) =ePio (e h)






Derivation of the scaling relations IlI

f(t,h) = [l 6 (|7 h)

1. Magpnetization: M ~ \t|ﬁ

M= e 8] o= 2o 5 (175 h) ~ o5

d—
-~ [p=

2. Critical Isotherm: M ~ hs .
M should remain finiteas t = 0 = ¢ (x) ~x"
because then

d—yp

d—yp v
/\/I~|t| Ve h—h_ = |§=_2
yh(d=yp)
|1_-| YhYt




Derivation of the scaling relations 1V

F(t,h) = [l 6 (|e] 75 )

3. Heat capacity: C~ |t

d
C= 2t i
h=0
4. Magnetic susceptibility: X ~ |t]7
d—2yp
1 oM 1 9% ~
= = 9v = — 2= t| v
X = %sT oh ‘h:o (ke T2 W |, t]




Hyperscaling |

5. Correlation length: ¢ ~ [t|™"
We have G ~ et Vt also for t #0

1
E~ltln = [v=1




Hyperscaling Il

6. Correlation function: ~ |r|7(d=2=n)

G(r) = b2 (i b t)

choose b=rand t =0

G(r)Nr—2(dfyh) = ’U:d+2—2}/h‘




Scaling relations

We got the following equations:

_d _ _d=w
o= 2 8= 7
_ d=2y; _ Y
7T T 6_d_}/h

v=21 n=d+2-2y,

t

= we can cancel the y;, and y; which have no experimental
relevance.



Scaling relations

From these six equations of the critical exponents one obtains:

’ a+20+v=2 ‘ Rushbrook's Identity

60—1= % Widom's Identity
Josephson’s ldentity
v=v(2-n) |

= There are only 2 independent Exponents



Onsager solution 1944

a=0 f=5 7=3

equations values
a+284+7=2 0+2f+1=2
= _ 78
d-1=3 15-1=37

y=v(2-n) $=1(2-3)



Outline

» The scaling hypothesis

» Critical exponents
» The scaling hypothesis
» Derivation of the scaling relations

» Heuristic explanation

» Kadanoff construction (1966)
» Scaling for the correlation function

» Universality

» Finite size scaling
» Disordered systems / Harris criterion (1974)

» Polymer statistics



Kadanoff construction 1966

Motivation:

» heuristic explanation = Idea of Renormalization group

Ising model:

N N N
Ho=—JY siss—HY si  + ¥ 44
(if) i
» dimension d
> lattice of N sites with distance a
» spins s; = *+1
» only nearest neighbor interactions

For T— T¢c = £ —



Kadanoff construction

Block spin transformation

» Partition the lattice into
blocks of side ba
» Each block is associated

with a new spin 5. Set § to

majority of spins in the

block.
cells cell length
original lattice N a
lattice of blocks | N = b= 9N | & = ba

Each block contains b9 sites of the original lattice



Kadanoff construction

Assumption 1:

» Block spin interacts only with nearest neighbor block spin and
an effective external field

N N
HQ = —JZS;SJ — HZS,’
(ij) i

Nb— Nb—?
Ho=-1>35-H) 3
(ij) i
Since Hamiltonians have the same structure
= free energy same with (different parameters)

NF (t,h) = Nb—9f (E, /"1)



Kadanoff construction

Assumption 2:

h=b"h F=b"t

= f(t,h)= b 4F(p"t,b"h)



Scaling for the correlation function

Consider Hamiltonian with non-uniform external field h not
changing significantly over distances ba.

Define: ¥ =r/b

BHg =ﬂHQo—Zh r)s(r

BHq (3) = BHao (3 Z h (7

If Z is the partition function the 2-point correlation function is
given by

G(n—r,Ha) = (s(rn)s(r)) —(s(n))(s(r))
= 8—2 InZ
8h(r1)8h(r2)

h(r)=0



Scaling for the correlation function

% InZ <
8/7 (I’l) 8/7 (r2)

LHS: G(A — F, Hq)
RHS: Ifr=|n—n|>ba = b 2b9G(r,Hy)

~ G (g HQ) — BRI2G (r, H)
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Universality classes |
Universality is a prediction of the renormalization group theory
Definition: Systems whose properties near 2nd order phase
transition are controlled by the same renormalization group fixed
point are in the same universality class.
Properties:
» have the same (relevant) critical exponents

» can have different transition temperatures

m/mg 3D Heisenberg f3
1.04»---.... Fo 0.34(4)
0& I fy Ni 0.378(4)
0.6 i CrBs 0.368(5)
04l mooni EuO 0.36(1)
02 Monte Carlo 0.364(4)
1 1 1 1 |T/TC




Universality classes Il

Universality classes are characterized by:
» spatial dimension
» symmetry of the order parameter

» range and symmetry of Hamiltonian

- The details of the form and magnitude of interactions is not
relevant.

If the above properties of a system are the same of an other
(well known) system, we already known its critical exponents!



Finite size scaling

v

All numerical calculations use finite systems.

v

Calculate quantities such as C, M,y for different lattice size.

v

Near the critical temperature.
C = L%E (L%t>

Cis independent of lattice site but depends on T, « and v.

v

v

If these parameters are chosen correctly and we plot C; L=V
. 1 .
against Lv t the curve will collapse.



Disordered systems

What happens if the system contains impurities?
» ordered phase is destroyed

» system remains ordered

Harris criterion (1974)
The critical behavior of a quenched disordered system does not
differ form that of the pure system if

dv > 2
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Polymers

» A polymer is a chain of monomers.

Examples:
> Synthetic Polymers
» PVC
» PE
» PET
> Biopolymers

» DNA

» RNA

Figure: protein T162

> proteins



Random walk: a crude model for a polymer

Random walk a

» There is a starting point 0.

» Distance from one point to

the next is a constant.

» Direction is chosen at

random with equal

probability.

Self avoiding random walk

» same but no intersections



Random walk: a crude model for a polymer

Random walk t—71a

» There is a starting point 0.

» Distance from one point to

the next is a constant.

» Direction is chosen at

random with equal

probability.

Self avoiding random walk

» same but no intersections



Random walk

Properties of a random walk

» ¢y (F) = number of distinct
walks from 0 to ¥

» end-to-end vector /]
- = =
r= E an f
A
n

> average square distance

(r) = (3ndm) + > (3ndm) = Na’

n=m n#m
——
=0

What is (r?) for a polymer (self-avoiding random walk)?



Solution by mapping to a O(n) vector model

Goal:
Find a connection of self-avoiding random walks and the O(n)
n — 0 model.
Model:
» Hypercubic lattice of dimension d
> %pin on each lattice site has n components.
S= (S,-l,Sl-z, ..,S,-”)

» Normalization:
n

L \2
Z (50‘) =n
[0

» only nearest neighbor interactions

Hamiltonian:
o= K Y 575y
(if) o



Moment Theorem

Theorem:
Let (...), be the average over all spin orientation

For n — 0 we have
5988y =4,
(5757), = fs

and all other momentum are 0.

Examples:

<5ﬂ5557>0 —0

(s°5°5°5°57) =0



Mapping to O(n) n — 0

The exponent of the Hamiltonian can be written as:

exp(~fHa) = exp(-BK D 57S7) =] [exe(-5K D 57'Sy)
(i) j “

[e X e 1 oo
= JJa-8K>_ srsp+ E(m<)2(z SPSM)? - )
(i) (ij) (ij)

Therefor the partition function Z is given by

Z = Trexp(—fHq)= /ko (exp (—BHa))o
- oJJa- ﬁKZS“Sa (ﬁK) 235751 — o
(ij) @

where Q =TT, [ dQ;



Diagram Representation

Z =[] - 4K 3 7S + (K5 575
(if) @ «

We expand the product over (ij)

» choose 1 do nothing

> choose GK ), 5755 draw
a line form i to j

» choose
S(OK) (52, 575))? draw
smallest loop

= 3B diagrams



Diagram Representation

z=[[( - BK Y SPp + L (BRSPS o
() « ¢

Taking the average

> only vertices with 2 lines
survive

(SSFSfy = 0
(SF'SFS£'5¢) = 0

> index of the spins must be
the same

= less than 38 diagrams



Diagram Representation

7 = [ 5K 3 SESF + S (0KP( S5 o
(if) @

67

Taking the average

» only vertices with 2 lines
survive

» index of the spins must be
the same

= less than 38 diagrams




Mapping to O(n) n — 0

Taking the average

(S5 5150 o= B =31

af...

It follows:

7=0 § : nnumber of loops (ﬁK)number of bounds

loop conf

For n — 0 we obtain Z = Q.



Mapping to O(n) n — 0

Correlation function
G(i,j) = (S'S})

= Z" TrH51511—5KZsa5a (5K)2(Zs,.asja)2)
Cij) a

like before
= surviving diagrams have single line (self-avoiding walk) form i to j

ZCN ) BK = lim G (r, BK)

This is the important relation which connects a self avoiding random
walk to the O(n) n — 0 model.



Critical behavior

Scaling of cy

Define: x = K cv=>_,cn(r)

ZN:CNXN :ZN:Z:CN(r)xN = ,liﬂqozr:G(r,x) =X~ |x=x]|"

: —N py—1
Ansatz: oy o< xg VN

Ansatz is correct since:

o0 N -7
Y e / dNN1 <X> x In <X>
N 0 Xc Xc
_ -
o <1+(XXc)> ~ 1% — x|

Xc



Critical behavior
Scaling of (r?)

<r2> _ Zrch(”)

= N
7

Similar calculations

Z r?G(r,x) = ZZCN xNr _ZZCN (r) r2x"

-

r

G (r,x) ~ r(d=24n) et = E en (r) r? ~ |xe — x|=%
N pp2v+~y—1
2 xg N 2
= (r’)~ o N=Y



Summary

v vuv

Near the critical point of a second-order phase transition the
thermodynamic potentials are assumed to be homogeneous
functions

f(t,h) = b= (b t, b h)
only 2 independent exponents
Systems can be grouped into universality classes
Harris criterion for quenched disordered systems dv > 2

Random walk <r2> ~ N
Self-avoiding random walk <r2> ~ N?¥
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