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Critical exponents

Summery of the critical exponents for a magnetic system

t =
T − Tc

Tc
h =

H

kBTc

Exponent Definition Description
α CH ∼ |t|−α specific heat at H = 0
β M ∼ |t|β magnetization at H = 0
γ χ ∼ |t|−γ isothermal susceptibility at H = 0

δ M ∼ h
1
δ critical isotherm

ν ξ ∼ |t|−ν correlation length
η G (r) ∼ |r |−(d−2+η) correlation function

I Fundamental thermodynamics ⇒ Exponent inequalities such as

α + 2β + γ ≥ 2 (Rushbrooke)



Critical exponents

The critical exponent λ of a function f (t) is

λ = lim
t→0

ln f (t)

ln t

I The function f (t) near critical temperature TC (t → 0) is
dominated by tλ

⇒ tλ describes f (t) at the transition.



The scaling hypothesis

I The singular part of the free energy density f is a
homogeneous function near a second-order phase transition.

Homogeneous functions
1 dim f (λr) = g (λ) f (r)

the scaling factor g is of the from g (λ) = λp

n dim f (λ~r) = g (λ) f (~r)

Generalized homogeneous functions

(i) λf (x , y) = f
(
λax , λby

)
⇔

(ii) λc f (x , y) = f
(
λax , λby

)



The scaling hypothesis

I The singular part of the free energy density f is a
homogeneous function near a second-order phase transition.

I The reduced temperature t and the order parameter h rescale
by different factors.

f (t, h) = b−d f (byt t, byhh)

I If f is a homogeneous function then also its Legendre
transform
⇒ all thermodynamical potentials are homogeneous.



Derivation of the scaling relations I

The scaling hypothesis postulates that the free energy is
homogeneous

f (t, h) = b−d f (byt t, byhh)

Let: b = |t|
1
yt

⇒ f (t, h) = |t|
d
yt f
(
±1, |t|−

yh
yt h
)

⇒ f (t, h) = |t|
d
yt φ

(
|t|−

yh
yt h
)



Derivation of the scaling relations II



Derivation of the scaling relations III

f (t, h) = |t|
d
yt φ

(
|t|−

yh
yt h
)

1. Magnetization: M ∼ |t|β

M = 1
kBT

∂f
∂h

∣∣
h=0

= 1
kBT

|t|
d−yh

yt φ′
(
|t|−

yh
yt h
)
∼ |t|

d−yh
yt

⇒ β = d−yh

yt

2. Critical Isotherm: M ∼ h
1
δ

M should remain finite as t → 0 ⇒ φ′ (x) ∼ x
d
yh
−1

because then

M ∼ |t|
d−yh

yt
h

d−yh
yh

|t|
yh(d−yh)

yhyt

⇒ δ = yh

d−yh



Derivation of the scaling relations IV

f (t, h) = |t|
d
yt φ

(
|t|−

yh
yt h
)

3. Heat capacity: C ∼ |t|−α

C = ∂2f
∂t2

∣∣∣
h=0

∼ |t|
d
yt
−2 ⇒ α = d

yt
− 2

4. Magnetic susceptibility: χ ∼ |t|γ

χ = 1
kBT

∂M
∂h

∣∣∣
h=0

= 1
(kBT )2

∂2f
∂h2

∣∣∣
h=0

∼ |t|
d−2yh

yt ⇒ γ = d−2yh
yt



Hyperscaling I

G (r) = b−2(d−yh)G
( r

b
, byt t

)
G (r) = |t|

2(d−yh)
yt Φ

(
r

|t|−
1
yt

)
5. Correlation length: ξ ∼ |t|−ν

We have G ∼ e
r
ξ ∀t also for t 6= 0

ξ ∼ |t|−
1
yt ⇒ ν = 1

yt



Hyperscaling II

6. Correlation function: G ∼ |r |−(d−2−η)

G (r) = b−2(d−yh)G
( r

b
, byt t

)
choose b = r and t = 0

G (r) ∼ r−2(d−yh) ⇒ η = d + 2− 2yh



Scaling relations

We got the following equations:

α = d
yt
− 2 β = d−yh

yt

γ = d−2yh
yt

δ = yh
d−yh

ν = 1
yt

η = d + 2− 2yh

⇒ we can cancel the yh and yt which have no experimental
relevance.



Scaling relations

From these six equations of the critical exponents one obtains:

α + 2β + γ = 2 Rushbrook’s Identity

δ − 1 = γ
β Widom’s Identity

2− α = dν Josephson’s Identity

γ = ν (2− η)

⇒ There are only 2 independent Exponents



Onsager solution 1944

HΩ = −J
N∑
〈ij〉

si sj − H
N∑
i

si

The exponents of the Onsager solution for the 2-dim Ising model.

α = 0 β = 1
8 γ = 7

4

δ = 15 ν = 1 η = 1
4

equations values

α + 2β + γ = 2 0 + 21
8 + 7

4 = 2

δ − 1 = γ
β 15− 1 = 7

4
8
1

2− α = dν 2− 0 = 2 · 1
γ = ν (2− η) 7

4 = 1
(
2− 1

4

)
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Kadanoff construction 1966

Motivation:

I heuristic explanation ⇒ Idea of Renormalization group

Ising model:

HΩ = −J
N∑
〈ij〉

si sj − H
N∑
i

si

I dimension d

I lattice of N sites with distance a

I spins si = ±1

I only nearest neighbor interactions

For T → TC ⇒ ξ →∞



Kadanoff construction

Block spin transformation

I Partition the lattice into
blocks of side ba

I Each block is associated
with a new spin s̃. Set s̃ to
majority of spins in the
block.

cells cell length

original lattice N a

lattice of blocks N ′ = b−dN a′ = ba

Each block contains bd sites of the original lattice



Kadanoff construction

Assumption 1:

I Block spin interacts only with nearest neighbor block spin and
an effective external field

HΩ = −J
N∑
〈ij〉

si sj − H
N∑
i

si

H̃Ω = −J̃
Nb−d∑
〈ij〉

s̃i s̃j − H̃
Nb−d∑

i

s̃i

Since Hamiltonians have the same structure
⇒ free energy same with (different parameters)

Nf (t, h) = Nb−d f
(
t̃, h̃
)



Kadanoff construction

Nf (t, h) = Nb−d f
(
t̃, h̃
)

f (t, h) = b−d f
(
t̃, h̃
)

We expect that h̃ = h̃ (h, b) and t̃ = t̃ (t, b). From the above
equation we conclude:

h̃ ∝ h t̃ ∝ t

Assumption 2:

h̃ = byhh t̃ = byt t

⇒ f (t, h) = b−d f (byt t, byhh)



Scaling for the correlation function

Consider Hamiltonian with non-uniform external field h not
changing significantly over distances ba.

Define: r̃ = r/b

βHΩ = βHΩ0 −
∑

r

h (r) s (r)

βH̃Ω (s̃) = βH̃Ω0 (s̃)−
∑

r̃

h̃ (r̃) s̃ (r̃)

If Z is the partition function the 2-point correlation function is
given by

G (r1 − r2,HΩ) = 〈s (r1) s (r2)〉 − 〈s (r1)〉 〈s (r2)〉

=
∂2

∂h (r1) ∂h (r2)
lnZ

∣∣∣∣
h(r)=0



Scaling for the correlation function

∂2

∂h̃ (r̃1) ∂h̃ (r̃2)
ln Z̃

(
h̃
)

=
∂2

∂h̃ (r̃1) ∂h̃ (r̃2)
lnZ (h)

LHS: G (r̃1 − r̃2, H̃Ω)

RHS: If r = |r1 − r2| � ba ⇒ b−2yhb2dG (r ,HΩ)

⇒ G
( r

b
, H̃Ω

)
= b2d−2yhG (r ,HΩ)
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Universality classes I
Universality is a prediction of the renormalization group theory

Definition: Systems whose properties near 2nd order phase
transition are controlled by the same renormalization group fixed
point are in the same universality class.

Properties:

I have the same (relevant) critical exponents

I can have different transition temperatures

3D Heisenberg β

Fe 0.34(4)
Ni 0.378(4)
CrB3 0.368(5)
EuO 0.36(1)
Monte Carlo 0.364(4)



Universality classes II

Universality classes are characterized by:

I spatial dimension

I symmetry of the order parameter

I range and symmetry of Hamiltonian

- The details of the form and magnitude of interactions is not
relevant.

If the above properties of a system are the same of an other
(well known) system, we already known its critical exponents!



Finite size scaling

I All numerical calculations use finite systems.

I Calculate quantities such as C , M,χ for different lattice size.

I Near the critical temperature.

CL = L
α
ν C̃
(
L

1
ν t
)

I C̃ is independent of lattice site but depends on Tc , α and ν.

I If these parameters are chosen correctly and we plot CLL
−α/ν

against L
1
ν t the curve will collapse.



Disordered systems

What happens if the system contains impurities?

I ordered phase is destroyed

I system remains ordered

Harris criterion (1974)
The critical behavior of a quenched disordered system does not
differ form that of the pure system if

dν > 2
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Polymers

I A polymer is a chain of monomers.

Figure: protein T162

Examples:

I Synthetic Polymers

I PVC

I PE

I PET

I Biopolymers

I DNA

I RNA

I proteins



Random walk: a crude model for a polymer

Random walk

I There is a starting point 0.

I Distance from one point to
the next is a constant.

I Direction is chosen at
random with equal
probability.

Self avoiding random walk

I same but no intersections



Random walk: a crude model for a polymer

Random walk

I There is a starting point 0.

I Distance from one point to
the next is a constant.

I Direction is chosen at
random with equal
probability.

Self avoiding random walk

I same but no intersections



Random walk

Properties of a random walk

I cN (~r) = number of distinct
walks from 0 to ~r

I end-to-end vector

~r =
∑
n

~an

I average square distance

〈
r2
〉

=
∑
n=m

〈~an~am〉+
∑
n 6=m

〈~an~am〉︸ ︷︷ ︸
=0

= Na2

What is
〈
r2
〉

for a polymer (self-avoiding random walk)?



Solution by mapping to a O(n) vector model

Goal:
Find a connection of self-avoiding random walks and the O(n)
n → 0 model.

Model:

I Hypercubic lattice of dimension d

I Spin on each lattice site has n components.
~S =

(
S1

i ,S2
i , ..,Sn

i

)
I Normalization:

n∑
α

(
~Sα
)2

= n

I only nearest neighbor interactions

Hamiltonian:
HΩ = −K

∑
〈ij〉,α

Sα
i Sα

j



Moment Theorem

Theorem:
Let 〈...〉0 be the average over all spin orientation

For n → 0 we have 〈
SαSβ

〉
0

= δαβ

and all other momentum are 0.

Examples: 〈
SαSβSγ

〉
0

= 0〈
SαSαSαSβSγ

〉
0

= 0



Mapping to O(n) n → 0

The exponent of the Hamiltonian can be written as:

exp(−βHΩ) = exp(−βK
∑
〈ij〉,α

Sα
i Sα

j ) =
∏
〈ij〉

exp(−βK
∑
α

Sα
i Sα

j )

=
∏
〈ij〉

(1− βK
∑
〈ij〉,α

Sα
i Sα

j +
1

2
(βK )2(

∑
〈ij〉,α

Sα
i Sα

j )2 − ...)

Therefor the partition function Z is given by

Z = Tr exp (−βHΩ) =
∏
k

∫
dΩk 〈exp (−βHΩ)〉0

= Ω〈
∏
〈ij〉

(1− βK
∑
α

Sα
i Sα

j +
1

2
(βK )2(

∑
α

Sα
i Sα

j )2)− ...〉0

where Ω =
∏

i

∫
dΩi



Diagram Representation

Z = Ω〈
∏
〈ij〉

(1− βK
∑
α

Sα
i Sα

j +
1

2
(βK )2(

∑
α

Sα
i Sα

j )2)〉0

We expand the product over 〈ij〉

I choose 1 do nothing

I choose βK
∑

α Sα
i Sα

j draw
a line form i to j

I choose
1
2(βK )2(

∑
α Sα

i Sα
j )2 draw

smallest loop

⇒ 3B diagrams



Diagram Representation

Z = Ω〈
∏
〈ij〉

(1− βK
∑
α

Sα
i Sα

j +
1

2
(βK )2(

∑
α

Sα
i Sα

j )2)〉0

Taking the average

I only vertices with 2 lines
survive

〈Sα
i Sα

i Sα
i 〉0 = 0

〈Sα
i Sα

i Sα
i Sα

i 〉0 = 0

I index of the spins must be
the same

⇒ less than 3B diagrams



Diagram Representation

Z = Ω〈
∏
〈ij〉

(1− βK
∑
α

Sα
i Sα

j +
1

2
(βK )2(

∑
α

Sα
i Sα

j )2)〉0

Taking the average

I only vertices with 2 lines
survive

I index of the spins must be
the same

⇒ less than 3B diagrams



Mapping to O(n) n → 0

Taking the average

〈
∑
αβ...

Sα
i Sα

j Sβ
j Sβ

k ... Sθ
qS ι

i 〉0 =
∑
αβ...

δαβδβγ ...δαι =
n∑
α

1 = n

It follows:

Z = Ω
∑

loop conf

nnumber of loops (βK )number of bounds

For n → 0 we obtain Z = Ω.



Mapping to O(n) n → 0

Correlation function

G (i , j) =
〈
S1

i S1
j

〉
= Z−1Tr

∏
〈ij〉

S1
i S1

j (1− βK
∑
α

Sα
i Sα

j +
1

2
(βK )2(

∑
α

Sα
i Sα

j )2)

like before
⇒ surviving diagrams have single line (self-avoiding walk) form i to j∑

N

cN (r) βK = lim
n→0

G (r , βK )

This is the important relation which connects a self avoiding random
walk to the O(n) n → 0 model.



Critical behavior

Scaling of cN

Define: x = βK cN =
∑

r cN (r)

∑
N

cNxN =
∑
N

∑
r

cN (r) xN = lim
n→0

∑
r

G (r , x) = χ ∼ |x − xc |−γ

Ansatz: cN ∝ x−N
c Nγ−1

Ansatz is correct since:∑
N

cNxN ∝
∫ ∞

0
dNNγ−1

(
x

xc

)N

∝ ln

(
x

xc

)−γ

= ln

(
1 +

(x − xc)

xc

)−γ

∼ |x − xc |−γ



Critical behavior

Scaling of
〈
r2
〉

〈
r2
〉

=
∑
~r

r2 cN(r)

cN

Similar calculations

∑
~r

r2G (r , x) =
∑
~r

∑
N

cN (r) xN r2 =
∑
N

∑
~r

cN (r) r2xN

G (r , x) ∼ r−(d−2+η)e−
r
ξ ⇒

∑
~r

cN (r) r2 ∼ |xc − x |γ−2ν

⇒
〈
r2
〉
∼ x−N

C N2ν+γ−1

x−N
C Nγ−1

∼ N2ν



Summary

I Near the critical point of a second-order phase transition the
thermodynamic potentials are assumed to be homogeneous
functions

f (t, h) = b−d f (byt t, byhh)

⇒ only 2 independent exponents

I Systems can be grouped into universality classes

I Harris criterion for quenched disordered systems dν > 2

I Random walk
〈
r2
〉
∼ N

Self-avoiding random walk
〈
r2
〉
∼ N2ν
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