BCS Theory of Superconductivity

Thomas Burgener
Supervisor: Dr. Christian Iniotakis

Proseminar in Theoretical Physics
Institut für theoretische Physik
ETH Zürich

June 11, 2007
What is BCS Theory?

The Nobel Prize in Physics 1972

"for their jointly developed theory of superconductivity, usually called the BCS-theory"

What is BCS Theory?

- First “working” microscopic theory for superconductors.
- It’s a mean-field theory.
- In it’s original form only applied for conventional superconductors.
What is BCS Theory?

- First “working” microscopic theory for superconductors.
- It’s a mean-field theory.
- In its original form only applied for conventional superconductors.
What is BCS Theory?

- First “working” microscopic theory for superconductors.
- It’s a mean-field theory.
- In its original form only applied for conventional superconductors.
Outline

1. Cooper-Pairs
 - Formation of Pairs
 - Origin of Attractive Interaction

2. BCS Theory
 - The model Hamiltonian
 - Bogoliubov-Valatin-Transformation
 - Calculation of the condensation energy

3. Finite Temperatures
 - Excitation Energies and the Energy Gap
 - Determination of T_c
 - Temperature dependence of the energy gap
 - Thermodynamic quantities
Outline

1. Cooper-Pairs
 - Formation of Pairs
 - Origin of Attractive Interaction

2. BCS Theory
 - The model Hamiltonian
 - Bogoliubov-Valatin-Transformation
 - Calculation of the condensation energy

3. Finite Temperatures
 - Excitation Energies and the Energy Gap
 - Determination of T_c
 - Temperature dependence of the energy gap
 - Thermodynamic quantities
Outline

1 Cooper-Pairs
 - Formation of Pairs
 - Origin of Attractive Interaction

2 BCS Theory
 - The model Hamiltonian
 - Bogoliubov-Valatin-Transformation
 - Calculation of the condensation energy

3 Finite Temperatures
 - Excitation Energies and the Energy Gap
 - Determination of T_c
 - Temperature dependence of the energy gap
 - Thermodynamic quantities
Outline

1 Cooper-Pairs
 - Formation of Pairs
 - Origin of Attractive Interaction

2 BCS Theory
 - The model Hamiltonian
 - Bogoliubov-Valatin-Transformation
 - Calculation of the condensation energy

3 Finite Temperatures
 - Excitation Energies and the Energy Gap
 - Determination of T_c
 - Temperature dependence of the energy gap
 - Thermodynamic quantities
Let's assume the following things:

- Consider a material with a filled Fermi sea at $T = 0$.
- Add two more electrons that
 - interact attractively with each other but
 - don’t interact with the other electrons except via Pauli-principle.
Formation of Pairs

Look for the groundstate wavefunction for the two added electrons, which has zero momentum:

$$\psi_0(r_1, r_2) = \sum_k \left(g_k e^{i k \cdot r_1} e^{-i k \cdot r_2} \right) \left(|\uparrow \downarrow\rangle - |\downarrow \uparrow\rangle \right)$$

The total wavefunction has to be antisymmetric with respect to exchange of the two electrons. The spin part is antisymmetric and therefore the spacial part has to be symmetric.

$$\Rightarrow g_k = g_{-k}.$$
Formation of Pairs

Inserting this into the Schrödinger equation of the problem leads to the following equation for the determination of the coefficients g_k and the energy eigenvalue E:

$$ (E - 2\epsilon_k) g_k = \sum_{k > k_F} V_{kk'} g_{k'} , $$

where

$$ V_{kk'} = \frac{1}{\Omega} \int V(\mathbf{r}) e^{i(k' - k) \cdot \mathbf{r}} d\mathbf{r} $$

(\mathbf{r}: distance between the two electrons, Ω: normalization volume, ϵ_k: unperturbed plane-wave energies).
Formation of Pairs

Since it is hard to analyze the situation for general $V_{kk'}$, assume:

$$V_{kk'} = \begin{cases}
-\nu, & E_F < \epsilon_k < E_F + \hbar \omega_c \\
0, & \text{otherwise}
\end{cases}$$

with $\hbar \omega_c$ a cutoff energy away from E_F.
Formation of Pairs

With this approximation we get:

\[
\frac{1}{V} = \sum_{k > k_F} \frac{1}{2\epsilon_k - E} = N(0) \int_{E_F}^{E_F + \hbar \omega_c} \frac{d\epsilon}{2\epsilon - E}
\]

\[
= \frac{1}{2} N(0) \ln \left(\frac{2E_F - E + 2\hbar \omega_c}{2E_F - E} \right).
\]

If \(N(0)V \ll 1 \), we can solve approximatively for the energy \(E \)

\[
E \approx 2E_F - 2\hbar \omega_c e^{-\frac{2}{N(0)V}} < 2E_F.
\]
Origin of Attractive Interaction

Negative terms come in when one takes the motion of the ion cores into account, e.g. considering electron-phonon interactions. The physical idea is that

- the first electron polarizes the medium by attracting positive ions;
- these excess positive ions in turn attract the second electron, giving an effective attractive interaction between the electrons.
Outline

1. Cooper-Pairs
 - Formation of Pairs
 - Origin of Attractive Interaction

2. BCS Theory
 - The model Hamiltonian
 - Bogoliubov-Valatin-Transformation
 - Calculation of the condensation energy

3. Finite Temperatures
 - Excitation Energies and the Energy Gap
 - Determination of T_c
 - Temperature dependence of the energy gap
 - Thermodynamic quantities
Having seen that the Fermi sea is unstable against the formation of a bound Cooper pair when the net interaction is attractive, we must then expect pairs to condense until an equilibrium point is reached. We need a smart way to write down antisymmetric wavefunctions for many electrons. This will be done in the language of second quantization.
BCS Theory

Introduce the creation operator $c_{k\sigma}^\dagger$, which creates an electron of momentum k and spin σ, and the corresponding annihilation operator $c_{k\sigma}$. These operators obey the standard anticommutation relations for fermions:

$$\{ c_{k\sigma}, c_{k'\sigma'}^\dagger \} \equiv c_{k\sigma} c_{k'\sigma'}^\dagger + c_{k'\sigma'}^\dagger c_{k\sigma} = \delta_{kk'} \delta_{\sigma\sigma'}$$

$$\{ c_{k\sigma}, c_{k'\sigma'} \} = 0 = \{ c_{k\sigma}^\dagger, c_{k'\sigma'}^\dagger \}.$$

Additionally, the particle number operator $n_{k\sigma}$ is defined by

$$n_{k\sigma} \equiv c_{k\sigma}^\dagger c_{k\sigma}.$$
We start with the so-called

pairing-hamiltonian

\[
\mathcal{H} = \sum_{\mathbf{k} \sigma} \epsilon_{\mathbf{k}} n_{\mathbf{k} \sigma} + \sum_{\mathbf{k} \mathbf{l}} V_{\mathbf{k} \mathbf{l}} c_{\mathbf{k} \uparrow}^\dagger c_{-\mathbf{k} \downarrow}^\dagger c_{-\mathbf{l} \downarrow} c_{\mathbf{l} \uparrow},
\]

presuming that it includes the terms that are decisive for superconductivity, although it omits many other terms which involve electrons not paired as \((\mathbf{k} \uparrow, -\mathbf{k} \downarrow)\).
The model Hamiltonian

We then add a term $-\mu N$, where μ is the chemical potential, leading to

$$\mathcal{H} - \mu N = \sum_{k\sigma} \xi_k n_{k\sigma} + \sum_{kl} V_{kl} c_{k\uparrow}^\dagger c_{l\downarrow}^\dagger c_{-k\downarrow} c_{l\uparrow}^\dagger.$$

The inclusion of this factor is mathematically equivalent to taking the zero of kinetic energy to be at μ (or E_F).
Bogoliubov-Valatin-Transformation

Define:

\[b_k \equiv \langle c_{-k}\downarrow c_k\uparrow \rangle \]

Because of the large number of particles involved, the fluctuations of \(c_{-k}\downarrow c_k\uparrow \) about these expectations values \(b_k \) should be small. Therefore express such products of operators formally as

\[c_{-k}\downarrow c_k\uparrow = b_k + (c_{-k}\downarrow c_k\uparrow - b_k) \]

and neglect quantities which are bilinear in the presumably small fluctuation term in parentheses.
Bogoliubov-Valatin-Transformation

Inserting this in our pairing Hamiltonian we obtain the so-called model-hamiltonian

\[\mathcal{H}_M - \mu N = \sum_{k\sigma} \xi_k c_{k\sigma}^\dagger c_{k\sigma} + \sum_{kl} V_{kl} \left(c_{k\uparrow}^\dagger c_{-k\downarrow}^\dagger b_l + b_k^* c_{-l\downarrow} c_{l\uparrow} - b_k^* b_l \right) \]

where the \(b_k \) are to be determined self-consistently.
Bogoliubov-Valatin-Transformation

Defining further

\[\Delta_k = - \sum_l V_{kl} b_l = - \sum_l V_{kl} \langle c_{-k\downarrow} c_{k\uparrow} \rangle \]

leads to the following form of the model-hamiltonian

\[\mathcal{H}_M - \mu \mathcal{N} = \sum_{k\sigma} \xi_k c_{k\sigma}^\dagger c_{k\sigma} - \sum_k (\Delta_k c_{k\uparrow}^\dagger c_{-k\downarrow}^\dagger + \Delta_k^* c_{-k\downarrow} c_{k\uparrow} - \Delta_k b_k^*) \]
Bogoliubov-Valatin-Transformation

This Hamiltonian can be diagonalized by a suitable linear transformation to define new Fermi operators γ_k:

\[
\begin{align*}
 c_{k\uparrow} &= u_k^* \gamma_{k\uparrow} + v_k \gamma_{-k\downarrow} \\
 c_{-k\downarrow}^\dagger &= -v_k^* \gamma_{k\uparrow} + u_k \gamma_{-k\downarrow}^\dagger
\end{align*}
\]

with $|u_k|^2 + |v_k|^2 = 1$. Our "job" is now to determine the values of v_k and u_k.
The model Hamiltonian

\[\mathcal{H}_M - \mu \mathcal{N} = \sum_k \xi_k \left((|u_k|^2 - |v_k|^2)(\gamma_{k\uparrow} \gamma_{k\uparrow} + \gamma_{-k\downarrow} \gamma_{-k\downarrow}) \right. \]

\[+ 2|v_k|^2 + 2u_k^* v_k^* \gamma_{-k\downarrow} \gamma_{k\uparrow} + 2u_k v_k \gamma_{k\uparrow}^\dagger \gamma_{-k\downarrow}^\dagger \right) \]

\[+ \sum_k \left((\Delta_k u_k v_k^* + \Delta_k^* u_k^* v_k)(\gamma_{k\uparrow}^\dagger \gamma_{k\uparrow} + \gamma_{-k\downarrow}^\dagger \gamma_{-k\downarrow} - 1) \right. \]

\[+ (\Delta_k v_k^*^2 - \Delta_k^* u_k^*^2) \gamma_{-k\downarrow} \gamma_{k\uparrow} \]

\[+ (\Delta_k^* v_k^2 - \Delta_k u_k^2) \gamma_{k\uparrow}^\dagger \gamma_{-k\downarrow}^\dagger + \Delta_k b_k^* \right). \]
Choose u_k and v_k so that the coefficients of $\gamma_{-k\downarrow}\gamma_{k\uparrow}$ and $\gamma_{k\uparrow}^\dagger\gamma_{-k\downarrow}^\dagger$ vanish.

\[
\Rightarrow 2\xi_k u_k v_k + \Delta_k^* v_k^2 - \Delta_k u_k^2 = 0
\]

\[
\Rightarrow \left(\frac{\Delta_k^* v_k}{u_k} \right)^2 + 2\xi_k \left(\frac{\Delta_k^* v_k}{u_k} \right) - |\Delta_k|^2 = 0
\]

\[
\Rightarrow \frac{\Delta_k^* v_k}{u_k} = \sqrt{\xi_k^2 + |\Delta_k|^2 - \xi_k} \equiv E_k - \xi_k
\]
Bogoliubov-Valatin-Transformation

This gives us an equation for the v_k and u_k as

$$|v_k|^2 = 1 - |u_k|^2 = \frac{1}{2} \left(1 - \frac{\xi_k}{E_k} \right).$$
The BCS ground state

BCS took as their form for the ground state

$$|\psi_G\rangle = \prod_k (u_k + v_k c_k^{\dagger} c_{-k\downarrow}^{\dagger}) |0\rangle$$

where $|u_k|^2 + |v_k|^2 = 1$. This form implies that the probability of the pair $(k \uparrow, -k \downarrow)$ being occupied is $|v_k|^2$, whereas the probability that it is unoccupied is $|u_k|^2 = 1 - |v_k|^2$.

Note: $|\psi_G\rangle$ is the vacuum state for the γ operators, e.g.

$$\gamma_{k\uparrow} |\psi_G\rangle = 0 = \gamma_{-k\downarrow} |\psi_G\rangle$$
Calculation of the condensation energy

We can now calculate the groundstate energy to be

\[
\langle \Psi_G | \mathcal{H} - \mu N | \Psi_G \rangle = 2 \sum_k \xi_k v_k^2 + \sum_{kl} V_{kl} u_k v_k u_l v_l
\]

\[
= \sum_k \left(\xi_k - \frac{\xi_k^2}{E_k} \right) - \frac{\Delta^2}{V}
\]

The energy of the normal state at \(T = 0 \) corresponds to the BCS state with \(\Delta = 0 \) and \(E_k = |\xi_k| \). Thus

\[
\langle \Psi_n | \mathcal{H} - \mu N | \Psi_n \rangle = \sum_{|k| < k_F} 2 \xi_k
\]
Calculation of the condensation energy

Thus, the condensation energy is given by

$$\langle E \rangle_s - \langle E \rangle_n = \sum_{|k| > k_F} \left(\xi_k - \frac{\xi_k^2}{E_k} \right) + \sum_{|k| < k_F} \left(-\xi_k - \frac{\xi_k^2}{E_k} \right) - \frac{\Delta^2}{V}$$

$$= 2 \sum_{|k| > k_F} \left(\xi_k - \frac{\xi_k^2}{E_k} \right) - \frac{\Delta^2}{V}$$

$$= \left(\frac{\Delta^2}{V} - \frac{1}{2} N(0) \Delta^2 \right) - \frac{\Delta^2}{V} = -\frac{1}{2} N(0) \Delta^2$$
Outline

1. Cooper-Pairs
 - Formation of Pairs
 - Origin of Attractive Interaction

2. BCS Theory
 - The model Hamiltonian
 - Bogoliubov-Valatin-Transformation
 - Calculation of the condensation energy

3. Finite Temperatures
 - Excitation Energies and the Energy Gap
 - Determination of T_c
 - Temperature dependence of the energy gap
 - Thermodynamic quantities
Excitation Energies and the Energy Gap

With the above choice of the u_k and v_k, the model-hamiltonian becomes

$$H_M - \mu N = \sum_k (\xi_k - E_k + \Delta_k b_k^*) + \sum_k E_k (\gamma_{k\uparrow} \gamma_{k\uparrow} + \gamma_{-k\downarrow} \gamma_{-k\downarrow}).$$

$$E_k = \sqrt{\Delta_k^2 + \xi_k^2}$$
Excitation Energies and the Energy Gap

Figure: Energies of elementary excitations in the normal and superconducting states as functions of ξ_k.
Inserting the γ operators in the definition of Δ_k gives

$$\Delta_k = - \sum_l V_{kl} \langle c_{-l\downarrow} c_{l\uparrow} \rangle$$

$$= - \sum_l V_{kl} u_l^* v_l \langle 1 - \gamma_{l\uparrow}^\dagger \gamma_{l\uparrow} - \gamma_{-l\downarrow}^\dagger \gamma_{-l\downarrow} \rangle$$

$$= - \sum_l V_{kl} u_l^* v_l (1 - 2f(E_l))$$

$$= - \sum_l V_{kl} \frac{\Delta_l}{2E_l} \tanh \frac{\beta E_l}{2}$$
Using again the approximated potential $V_{kl} = -V$, we have $\Delta_k = \Delta_l = \Delta$ and therefore

$$\frac{1}{V} = \frac{1}{2} \sum_k \frac{\tanh(\beta E_k/2)}{E_k}.$$

This formula determines the critical temperature T_c!
Determination of T_c

The critical temperature T_c is the temperature at which $\Delta_k \to 0$ and thus $E_k \to \xi_k$. By inserting this in the above formula, rewriting the sum as an integral and changing to a dimensionless variable we find

$$\frac{1}{N(0)V} = \int_0^{\beta_c \hbar \omega_c / 2} \frac{\tanh x}{x} dx = \ln \left(\frac{2e^\gamma}{\pi} \beta_c \hbar \omega_c \right)$$

($\gamma \approx 0.577...$: the Euler constant)
Determination of T_c

Critical temperature T_c

$$kT_c = \beta_c^{-1} \approx 1.13\hbar\omega_c e^{-1/N(0)V}$$
Determination of T_c

For small temperatures we find

\[
\frac{1}{N(0)V} = \int_0^{\hbar \omega_c} \frac{d\xi}{(\xi^2 + \Delta^2)^{1/2}}
\]

\[\Rightarrow \Delta = \frac{\hbar \omega_c}{\sinh(1/N(0)V)} \approx 2\hbar \omega_c e^{-1/N(0)V},\]

which shows that T_c and $\Delta(0)$ are not independent from each other

\[
\frac{\Delta(0)}{kT_c} \approx \frac{2}{1.13} \approx 1.764
\]
Temperature dependence of the energy gap

Rewriting again

\[\frac{1}{V} = \frac{1}{2} \sum_{k} \frac{\tanh(\beta E_k/2)}{E_k}. \]

in an integral form and inserting \(E_k \) gives

\[\frac{1}{N(0)V} = \int_{0}^{\hbar \omega_c} \frac{\tanh \left(\frac{\hbar \omega_c}{2} \beta (\xi^2 + \Delta^2)^{1/2} \right)}{(\xi^2 + \Delta^2)^{1/2}} d\xi, \]

which can be evaluated numerically.
Temperature dependence of the energy gap

Figure: Temperature dependence of the energy gap with some experimental data (Phys. Rev. 122, 1101 (1961))
Temperature dependence of the energy gap

Near T_c we get

\[
\frac{\Delta(T)}{\Delta(0)} \approx 1.74 \left(1 - \frac{T}{T_c}\right)^{1/2}, \quad T \approx T_c,
\]

which shows the typical square root dependence of the order parameter for a mean-field theory.
Thermodynamic quantities

With $\Delta(T)$ determined, we know the fermion excitation energies $E_k = \sqrt{\xi_k^2 + \Delta(T)^2}$. Then the quasi-particle occupation numbers will follow the Fermi-function $f_k = (1 + e^{\beta E_k})^{-1}$, which determine the electronic entropy for a fermion gas

$$S_{es} = -2k \sum_k ((1 - f_k) \ln(1 - f_k) + f_k \ln f_k).$$
Thermodynamic quantities

Figure: Electronic entropy in the superconducting and normal state.
Given $S_{es}(T)$, we find the specific heat

$$C_{es} = -\beta \frac{dS_{es}}{d\beta} = 2\beta k \sum_k -\frac{\partial f_k}{\partial E_k} \left(E_k^2 + \frac{1}{2\beta} \frac{d\Delta^2}{d\beta} \right)$$

In the normal state we have

$$C_{en} = \frac{2\pi^2}{3} N(0) k^2 T.$$
We expect a jump in the specific heat from the superconducting to the normal state:

\[
\Delta C = (C_{es} - C_{en})|_{T_c} = N(0) \left(\frac{-d\Delta^2}{dT} \right)|_{T_c} \approx 9.4N(0)k^2T_c
\]
Thermodynamic quantities

Figure: Experimental data for the specific heat in the superconducting and normal state (Phys. Rev. **114**, 676 (1959))
Type I superconductors

Figure: Phase diagram of a Type I superconductor
Vortex-State

The Nobel Prize in Physics 2003

"for pioneering contributions to the theory of superconductors and superfluids"

Type I and Type II superconductors

By applying Ginzburg-Landau theory for superconductors one finds two characteristic lengths:

1. The Landau penetration depth for external magnetic fields λ and
2. the Ginzburg-Landau coherence length ξ, which characterizes the distance over which ψ can vary without undue energy increase.
Type I and Type II superconductors

Define

\[\kappa \equiv \frac{\lambda}{\xi} \]

By linearizing the GL equations near \(T_c \) one can find:

\[\kappa < \frac{1}{\sqrt{2}} : \text{Type I superconductor} \]

\[\kappa > \frac{1}{\sqrt{2}} : \text{Type II superconductor} \]
Type II superconductors

Figure: Phase diagram of a Type II superconductor
As a solution of the GL equation, one could find the following form of the orderparameter:

$$\psi(x, y) = \frac{1}{N} \sum_{n=-\infty}^{\infty} \exp \left(\frac{\pi (ixy - y^2)}{\omega_1 \Im \omega_2} + i\pi n \right)$$

$$+ \frac{i\pi (2n + 1)}{\omega_1} (x + iy) + i\pi \frac{\omega_2}{\omega_1} n(n + 1)$$

$$N = \left(\frac{\omega_1}{2 \Im \omega_2} \exp \left(\frac{\Im \omega_2}{\omega_1} \right) \right)^{1/4}$$
Vortex-State

Figure: Square and triangle symmetric state of the vortex lattice in a density plot of $|\Psi|^2$.
Vortex-State

Figure: Square and triangle symmetric state of the vortex lattice in a 3D plot.
Summary

- An attractive interaction between electrons will result in forming bound Cooper pairs.
- The model-hamiltonian can be diagonalized using a Bogoliubov-Valatin-Transformation.
- The order parameter in a superconductor is the energy-gap Δ.
- BCS-Theory gives a prediction of the critical temperature T_c and the energy gap $\Delta(T)$.
- Vortices will be observed in Type II superconductors.
Thank you for your attention!

Are there any questions?