The Phases of Quantum Chromodynamics

Bela Bauer (bauerb@phys.ethz.ch)
11.06.2007

Supervised by Dr. Urs Wenger and Dr. Philippe de Forcrand
Overview

Introduction
- QFT and thermodynamics
- QCD and symmetries
- Simplifications of QCD

The QCD Phase Diagram
- Low temperature and finite density — The ground state \(T = 0 \)
- Low temperature and finite density — The situation for low temperatures
- Quark-gluon-plasma at high temperatures
- High temperature and large chemical potential

Colour superconductivity and colour flavour locking
- Symmetry breaking due to colour superconductivity
- Physical consequences of CFL

Relativistic Heavy Ion Collisions
Motivation and methods

▶ Motivation:
 ▶ High-temperature universe, i.e. fractions of a second after the Big Bang
 ▶ High-density matter, i.e. in a neutron star
 ▶ Understanding of QCD in extreme environments → deeper understanding of theory
Motivation and methods

- **Motivation:**
 - High-temperature universe, i.e. fractions of a second after the Big Bang
 - High-density matter, i.e. in a neutron star
 - Understanding of QCD in extreme environments → deeper understanding of theory

- **Methods:**
 - Almost no rigorous results
 - High temperatures, low densities: lattice calculations
 - High densities: analytic calculations
Finite temperature QFT

Short repetition of what has already been said for confinement/deconfinement:

- Partition function of a statistical system ($\beta = 1/T$):

$$Z = \sum_{\text{all states}} e^{-\beta E}$$
Finite temperature QFT

Short repetition of what has already been said for confinement/deconfinement:

- Partition function of a statistical system ($\beta = 1/T$):

\[Z = \sum_{\text{all states}} e^{-\beta E} \]

- Rewrite using

\[e^{-\beta E} \rightarrow \langle \alpha | e^{-\beta H} | \alpha \rangle \]

and Euclidian time $\tau = it$
Finite temperature QFT

Short repetition of what has already been said for confinement/deconfinement:

- Partition function of a statistical system ($\beta = 1/T$):
 \[Z = \sum_{\text{all states}} e^{-\beta E} \]

- Rewrite using
 \[e^{-\beta E} \rightarrow \langle \alpha | e^{-\beta H} | \alpha \rangle \]
 and Euclidian time $\tau = it$

- Final result:
 \[Z = \int_{\phi(0)=\phi(\beta)} D\phi \exp \left[- \int_{0}^{\beta} d\tau \int d^3x \mathcal{L}_E \right] \]
Chemical potential

- In canonical ensemble: particle number N kept constant
Chemical potential

- In canonical ensemble: particle number N kept constant
- In a field theory:
 - Creation of particle-antiparticle pairs; conserved quantity defined through number of particles minus number of antiparticles
Chemical potential

- In canonical ensemble: particle number N kept constant
- In a field theory:
 - Creation of particle-antiparticle pairs; conserved quantity defined through number of particles minus number of antiparticles
- More convenient: allow particle number to fluctuate, but introduce weight factor similar to Gibbs factor for the energy
Grand canonical ensemble

- Grand canonical ensemble: partition function defined by

\[Z = \sum_{\text{all states } \alpha} e^{-\beta E_{\alpha}} e^{\beta \mu N_{\alpha}} \]
Grand canonical ensemble

- Grand canonical ensemble: partition function defined by

\[Z = \sum_{\text{all states } \alpha} e^{-\beta E\alpha} e^{\beta \mu N\alpha} \]

- \(\mu \) is called the chemical potential associated with the charge \(N \): energy change due to the introduction of particles to the system
Grand canonical ensemble

- Grand canonical ensemble: partition function defined by

\[Z = \sum_{\text{all states } \alpha} e^{-\beta E_\alpha} e^{\beta \mu N_\alpha} \]

- \(\mu \) is called the chemical potential associated with the charge \(N \): energy change due to the introduction of particles to the system

- Potentially many chemical potentials in a system; here, baryon chemical potential \(\mu_B \) used, associated with baryon number \(N_B \)
Grand canonical ensemble

- Grand canonical ensemble: partition function defined by

\[Z = \sum_{\text{all states } \alpha} e^{-\beta E_{\alpha}} e^{\beta \mu N_{\alpha}} \]

- \(\mu \) is called the chemical potential associated with the charge \(N \): energy change due to the introduction of particles to the system

- Potentially many chemical potentials in a system; here, baryon chemical potential \(\mu_B \) used, associated with baryon number \(N_B \)

- Grand (canonical) potential = Helmholtz free energy:

\[\Omega(T, \mu) = -T \ln Z = -pV \]

- Minimized in equilibrium \(\rightarrow p \) maximized
Variables in the phase diagram

- Need to define driving parameters of the phase diagram
- Choose such that they are constant throughout the system even at phase coexistence and intensive
- One obvious variable: temperature T
- Density? No, because at phase coexistence, different density in different phases
- Chemical potential: connected to density, but constant across phase boundaries
Chiral symmetry: conventions

- Fermionic field described by Dirac equation
- Weyl representation used:

\[
\gamma^5 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \psi(x) = \begin{pmatrix} \psi_L(x)' \\ \psi_R(x)' \end{pmatrix}
\]

\[
\psi_L(x) = \frac{1 - \gamma^5}{2} \psi(x)
\]

\[
\psi_R(x) = \frac{1 + \gamma^5}{2} \psi(x).
\]

- ψ'_L and ψ'_R: left-handed and right-handed components
Chiral symmetry: conserved currents

Consider symmetry transformations:

\[U(1)_B : \psi(x) \rightarrow e^{i\alpha} \psi(x) \]
\[\psi(x) \rightarrow e^{i\alpha \gamma^5} \psi(x) \]

\[\text{Divergences:} \quad \partial_\mu j^\mu = 0 \]
\[\partial_\mu j^\mu_5 = 2 \quad \text{im} \psi \gamma^5 \psi \]

\[\text{The associated currents are conserved!} \]
Chiral symmetry: conserved currents

- Consider symmetry transformations:

\[U(1)_B : \psi(x) \rightarrow e^{i\alpha}\psi(x) \]
\[\psi(x) \rightarrow e^{i\alpha\gamma^5}\psi(x) \]

- Associated currents:

\[j^\mu(x) = \overline{\psi}(x)\gamma^\mu\psi(x) \]
\[j^{\mu5}(x) = \overline{\psi}(x)\gamma^\mu\gamma^5\psi(x) \]
Chiral symmetry: conserved currents

Consider symmetry transformations:

\[U(1)_B : \psi(x) \rightarrow e^{i\alpha}\psi(x) \]
\[\psi(x) \rightarrow e^{i\alpha\gamma^5}\psi(x) \]

Associated currents:

\[j^\mu(x) = \overline{\psi}(x)\gamma^\mu\psi(x) \]
\[j^{\mu5}(x) = \overline{\psi}(x)\gamma^\mu\gamma^5\psi(x) \]

Divergences:

\[\partial_\mu j^\mu = 0 \]
\[\partial_\mu j^{\mu5} = 2i m\overline{\psi}\gamma^5\psi \]
Chiral symmetry: conserved currents

- Consider symmetry transformations:

\[U(1)_B : \psi(x) \rightarrow e^{i\alpha}\psi(x) \]
\[\psi(x) \rightarrow e^{i\alpha\gamma^5}\psi(x) \]

- Associated currents:

\[j^\mu(x) = \overline{\psi}(x)\gamma^\mu\psi(x) \]
\[j^{\mu5}(x) = \overline{\psi}(x)\gamma^\mu\gamma^5\psi(x) \]

- Divergences:

\[\partial_\mu j^\mu = 0 \]
\[\partial_\mu j^{\mu5} = 2im\overline{\psi}\gamma^5\psi \]

- The associated currents are conserved!
Chiral symmetry: Left- and right-handed currents

- Define left- and right-handed currents

\[j^\mu_L = \overline{\psi_L} \gamma^\mu \psi_L \]
\[j^\mu_R = \overline{\psi_R} \gamma^\mu \psi_R \]

- We find:

\[j^\mu_L + j^\mu_R = j^\mu \]
\[\partial_\mu j^\mu_L = \partial_\mu j^\mu_R = 0. \]

- Currents for left- and right-handed quarks are conserved separately!
Chiral symmetry in QCD

Consider QCD with a doublet of massless quark flavours:

\[Q = \begin{pmatrix} u \\ d \end{pmatrix} = Q_L + Q_R, \quad Q_L/R = \frac{1 \mp \gamma^5}{2} \begin{pmatrix} u \\ d \end{pmatrix} \]
Chiral symmetry in QCD

- Consider QCD with a doublet of massless quark flavours:

\[Q = \begin{pmatrix} u \\ d \end{pmatrix} = Q_L + Q_R, \quad Q_{L/R} = \frac{1 \mp \gamma^5}{2} \begin{pmatrix} u \\ d \end{pmatrix} \]

- Transform separately under isospin transformations

\[U_L, U_R \in SU(2) : \quad Q_L \to U_L Q_L, \quad Q_R \to U_R Q_R \]

- Chiral flavour symmetry of QCD: \(SU(N_f)_L \times SU(N_f)_R \), \(N_f \) number of (massless) quark flavours
Chiral symmetry in QCD

Consider QCD with a doublet of massless quark flavours:

\[Q = \begin{pmatrix} u \\ d \end{pmatrix} = Q_L + Q_R, \quad Q_{L/R} = \frac{1 \mp \gamma^5}{2} \begin{pmatrix} u \\ d \end{pmatrix} \]

Transform separately under isospin transformations

\[U_L, U_R \in SU(2) : \quad Q_L \rightarrow U_L Q_L, \quad Q_R \rightarrow U_R Q_R \]

Chiral flavour symmetry of QCD: \(SU(N_f)_L \times SU(N_f)_R \), \(N_f \) number of (massless) quark flavours

Full symmetry group of QCD:

\[SU(3)_C \times SU(N_f)_L \times SU(N_f)_R \times U(1)_B \]
Chiral symmetry breaking in QCD

- Strong attractive interactions between quarks and antiquarks, i.e. negative contribution to total energy
- Energy cost to create a pair of massless particles is very small
Chiral symmetry breaking in QCD

- Strong attractive interactions between quarks and antiquarks, i.e. negative contribution to total energy
- Energy cost to create a pair of massless particles is very small
- Therefore, vacuum is populated by quark-antiquark pairs
- These have overall momentum and angular momentum of 0 → they carry net helicity charge, pairs of left-handed quarks and left-handed antiquark, which is antiparticle of right-handed quark
Chiral symmetry breaking in QCD 2

- Non-zero expectation value for quark-antiquark pairs:

\[\langle 0 | \overline{Q} Q | 0 \rangle = \langle 0 | \overline{Q}_L Q_R + \overline{Q}_R Q_L | 0 \rangle \neq 0 \]

- Apply chiral flavour symmetries \(U_L, U_R \in SU(2) \):

\[\langle 0 | \overline{Q}_L Q_R + \overline{Q}_R Q_L | 0 \rangle = \langle 0 | \overline{Q}_L U_L^\dagger U_R Q_R + \overline{Q}_R U_R^\dagger U_L Q_L | 0 \rangle \]
Chiral symmetry breaking in QCD 2

- Non-zero expectation value for quark-antiquark pairs:
 \[
 \langle 0 | \overline{Q} Q | 0 \rangle = \langle 0 | \overline{Q}_L Q_R + \overline{Q}_R Q_L | 0 \rangle \neq 0
 \]

- Apply chiral flavour symmetries \(U_L, U_R \in SU(2) \):
 \[
 \langle 0 | \overline{Q}_L Q_R + \overline{Q}_R Q_L | 0 \rangle = \langle 0 | \overline{Q}_L U_L^\dagger U_R Q_R + \overline{Q}_R U_R^\dagger U_L Q_L | 0 \rangle
 \]

- Only fulfilled for \(U_L = U_R \)!

- Appearance of condensate breaks
 \[
 SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V
 \]

- Spontaneous symmetry breaking: symmetry of Lagrangian not realized in ground state
Goldstone theorem

Assumptions:
- No long-range interactions, e.g. Coulomb forces → true for QCD w/o Coulomb
- Lagrangian has a continuous, global symmetry
- Potential term selects a ground state (minimum potential)
- Ground state does not respect symmetry
The Phases of Quantum Chromodynamics

Introduction
QFT and thermodynamics
QCD and symmetries
Simplifications of QCD
The QCD Phase Diagram
Colour superconductivity and colour flavour locking
Relativistic Heavy Ion Collisions

Goldstone theorem

Assumptions:
- No long-range interactions, e.g. Coulomb forces → true for QCD w/o Coulomb
- Lagrangian has a continuous, global symmetry
- Potential term selects a ground state (minimum potential)
- Ground state does not respect symmetry

Consequences (proof of classical, scalar case can be found in the report):
- Occurrence of a massless bosonic particle called (Nambu-)Goldstone boson
- True also for non-classical theories
Higgs mechanism

- Goldstone theorem: spontaneous breaking of a global continuous symmetry
- Higgs mechanism: spontaneous breaking of a local gauge symmetry!
Higgs mechanism

- Goldstone theorem: spontaneous breaking of a global continuous symmetry
- Higgs mechanism: spontaneous breaking of a local gauge symmetry!
- Assumptions:
 - Lagrange function with local gauge symmetry
 - Ground state which is not invariant under gauge transformations
Higgs mechanism

- Goldstone theorem: spontaneous breaking of a global continuous symmetry
- Higgs mechanism: spontaneous breaking of a local gauge symmetry!
- Assumptions:
 - Lagrange function with local gauge symmetry
 - Ground state which is not invariant under gauge transformations
- Consequences:
 - New term in the Lagrangian: \(\Delta \mathcal{L} = \frac{1}{2} m_A^2 A_\mu A^\mu \)
 - Gauge bosons, described by \(A_\mu \), acquire mass!
Simplified QCD

- Electroweak interactions are ignored
- Two massless quarks u and d, no other quarks
- Leads to global $SU(2)_L \times SU(2)_R \times U(1)_B$ symmetry, broken down to $SU(2)_V \times U(1)_B$
The Phases of Quantum Chromodynamics

The QCD Phase Diagram — schematically

- **Introduction**
- **The QCD Phase Diagram**
 - Low temperature and finite density — The ground state $T = 0$
 - Low temperature and finite density — The situation for low temperatures
 - Quark-gluon-plasma at high temperatures
 - High temperature and large chemical potential
- **Colour superconductivity and colour flavour locking**
- **Relativistic Heavy Ion Collisions**

The QCD Phase Diagram

- **Low temperature and finite density — The ground state $T = 0$**
- **Low temperature and finite density — The situation for low temperatures**
- **Quark-gluon-plasma at high temperatures**
- **High temperature and large chemical potential**

Chiral symmetry

- **Restored (for $m_{u,d,s} = 0$):** $\langle \bar{\psi}\psi \rangle \approx 0$
- **Broken:** $\langle \bar{\psi}\psi \rangle > 0$

Crossover region for finite quark masses

- **2nd order P.T. for zero quark masses**

1st order P.T.

- **Exotic phases, e.g. colour superconductivity:** CFL
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

Low temperature and finite density — The ground state $T = 0$
Low temperature and finite density — The situation for low temperatures
Quark-gluon-plasma at high temperatures
High temperature and large chemical potential

Colour superconductivity and colour flavour locking

Relativistic Heavy Ion Collisions

The QCD Phase Diagram — schematically
Vacuum to nuclear matter: transition at μ_0

- Consider partition function:
 $$Z = \sum_{\text{all states } \alpha} \exp \left(-\frac{E_\alpha - \mu N_\alpha}{T} \right)$$

- At $T = 0$: sum exponentially dominated by state which minimizes $E_\alpha - \mu N_\alpha$

- At $\mu = 0$: $N = E = 0$ with $n(\mu) = 0$
Vacuum to nuclear matter: transition at μ_0

- Consider partition function:
 \[Z = \sum_{\text{all states } \alpha} \exp \left(-\frac{E_\alpha - \mu N_\alpha}{T} \right) \]

- At $T = 0$: sum exponentially dominated by state which minimizes $E_\alpha - \mu N_\alpha$

- At $\mu = 0$: $N = E = 0$ with $n(\mu) = 0$

- $\mu > 0$:
 - $E_\alpha - \mu N_\alpha > 0$: still $N = E = 0$ dominating
 - $E_\alpha - \mu N_\alpha \leq 0$: other states contribute

- Therefore expect phase transition to $n(\mu) > 0$ at
 \[\mu_0 := \min_\alpha \left(\frac{E_\alpha}{N_\alpha} \right) \]

- $n(\mu)$ is order parameter for the transition
Vacuum to nuclear matter: value of μ_0

- Problem: find value of μ_0 for reduced and full QCD
- Reduced QCD:
 - Use $\frac{E}{N} = m_N - \frac{Nm_N - E}{N}$
 - Maximize second term $\epsilon = \frac{Nm_N - E}{N}$ which is binding energy per nucleon
 - Weizsaecker formula, w/o e.-m. interaction and for “infinitely large” nucleus: $\epsilon \approx 16 \text{ MeV}$
 - Find first-order phase transition to $n_0 \approx 0.16 \text{ fm}^{-3}$ at $\mu_0 \approx m_N - 16 \text{ MeV} \approx 923 \text{ MeV}$
Vacuum to nuclear matter: value of μ_0

- Problem: find value of μ_0 for reduced and full QCD

- Reduced QCD:
 - Use $\frac{E}{N} = m_N - \frac{Nm_N - E}{N}$
 - Maximize second term $\epsilon = \frac{Nm_N - E}{N}$ which is binding energy per nucleon
 - Weizsaecker formula, w/o e.-m. interaction and for “infinitely large” nucleus: $\epsilon \approx 16$ MeV
 - Find first-order phase transition to $n_0 \approx 0.16 \text{ fm}^{-3}$ at

 $$\mu_0 \approx m_N - 16 \text{ MeV} \approx 923 \text{ MeV}$$

- Full QCD with Coulomb forces:
 - Infinite nucleus unstable due to Coulomb repulsion
 - Highest binding energy: iron nuclei \rightarrow adding electrons for neutrality, phase transition to iron solid at

 $$\mu_0 \approx m_N - 8 \text{ MeV} \approx 931 \text{ MeV}$$
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

- Low temperature and finite density — The ground state $T = 0$
- Low temperature and finite density — The situation for low temperatures
- Quark-gluon-plasma at high temperatures
- High temperature and large chemical potential

Colour superconductivity and colour flavour locking

Relativistic Heavy Ion Collisions

The QCD Phase Diagram — schematically

- Chiral symmetry restored (for $m_{u,d,s} = 0$): $\langle \bar{\psi}\psi \rangle \approx 0$
- Chiral symmetry broken: $\langle \bar{\psi}\psi \rangle > 0$
- 1st order P.T.
- Exotic phases, e.g. colour superconductivity: CFL
- $\langle n_B \rangle = 0$
- $\langle n_B \rangle > 0$
- $\mu_0 = 923 \text{ MeV}$
- μ_1
High-density phases

- $\mu_0 < \mu < \mu_0 + 200$ MeV: very little known
High-density phases

- $\mu_0 < \mu < \mu_0 + 200$ MeV: very little known
- $\mu \gg \mu_0 + 200$ MeV: particles occupy high momentum states due to Fermi statistics
- High momentum \rightarrow asymptotic freedom \rightarrow chiral condensate vanishes
- Restoration of chiral symmetry (exact for massless quarks) is accompanied with phase transition at $\mu = \mu_1$
- Speculation: more phase transitions, exotic phases: colour superconductivity
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

Low temperature and finite density — The ground state $T = 0$

Low temperature and finite density — The situation for low temperatures

Quark-gluon-plasma at high temperatures

High temperature and large chemical potential

Colour superconductivity and colour flavour locking

Relativistic Heavy Ion Collisions

The QCD Phase Diagram — schematically
The situation for low temperatures — Overview

- Asymptotic freedom for high momentum states still valid for finite temperatures
- Phase transition at $\mu = \mu_1$ not well understood, therefore little known about low-temperature behaviour
The situation for low temperatures — Overview

- Asymptotic freedom for high momentum states still valid for finite temperatures
- Phase transition at $\mu = \mu_1$ not well understood, therefore little known about low-temperature behaviour
- At $\mu = \mu_0$:
 - $n(\mu) > 0$ for finite T even for $\mu < \mu_0 \rightarrow$ no order parameter
 - But: discontinuities in 1st order phase transitions are assumed to appear as lines of 1st order p.t.s
 - First-order phase transitions should form lines terminated by critical point
The transition at $\mu = \mu_0$ for low temperatures

- Slope governed by Clausius-Clapeyron: $\frac{dT}{d\mu} = -\frac{\Delta n}{\Delta s}$
The transition at $\mu = \mu_0$ for low temperatures

- Slope governed by Clausius-Clapeyron: $\frac{dT}{d\mu} = -\frac{\Delta n}{\Delta s}$
- In analogy to normal liquid-gas transition:
 - Nernst: $S \to 0$ for $T \to 0$
 - Therefore $\Delta s = 0$ at $T = 0 \to$ infinite slope
The transition at $\mu = \mu_0$ for low temperatures

- Slope governed by Clausius-Clapeyron: $\frac{dT}{d\mu} = -\frac{\Delta n}{\Delta s}$
- In analogy to normal liquid-gas transition:
 - Nernst: $S \rightarrow 0$ for $T \rightarrow 0$
 - Therefore $\Delta s = 0$ at $T = 0 \rightarrow$ infinite slope
 - Gas (high T) expected to have lower particle density $\rightarrow \Delta n < 0$
 - At 1st order transition, system absorbs heat: $\delta Q < 0 \rightarrow \Delta s < 0$
 - With $\frac{\Delta n}{\Delta s} > 0$, we find
 $$\frac{dT}{d\mu} < 0$$
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

- Low temperature and finite density — The ground state $T = 0$
- Low temperature and finite density — The situation for low temperatures
- Quark-gluon-plasma at high temperatures
- High temperature and large chemical potential
- Colour superconductivity and colour flavour locking
- Relativistic Heavy Ion Collisions

The transition at $\mu = \mu_0$ for low temperatures

- Slope governed by Clausius-Clapeyron: $\frac{dT}{d\mu} = -\frac{\Delta n}{\Delta s}$
- In analogy to normal liquid-gas transition:
 - Nernst: $S \to 0$ for $T \to 0$
 - Therefore $\Delta s = 0$ at $T = 0 \to$ infinite slope
 - Gas (high T) expected to have lower particle density $\to \Delta n < 0$
 - At 1st order transition, system absorbs heat: $\delta Q < 0 \to \Delta s < 0$
 - With $\frac{\Delta n}{\Delta s} > 0$, we find

$$\frac{dT}{d\mu} < 0$$

- Expect line to terminate in critical point,
 $T_0 \approx \epsilon \approx 16$ MeV
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

Low temperature and finite density — The ground state $T = 0$

Low temperature and finite density — The situation for low temperatures

Quark-gluon-plasma at high temperatures

High temperature and large chemical potential

Colour superconductivity and colour flavour locking

Relativistic Heavy Ion Collisions

The QCD Phase Diagram — schematically

Chiral symmetry restored (for $m_{u,d,s} = 0$):
\[\langle \bar{\psi}\psi \rangle \approx 0 \]

Chiral symmetry broken:
\[\langle \bar{\psi}\psi \rangle > 0 \]

1st order P.T.

Exotic phases, e.g. colour superconductivity; CFL

$\langle n_B \rangle = 0$

$\langle n_B \rangle > 0$

$\mu_0 = 923 \text{ MeV}$

μ_1

μ
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

Low temperature and finite density — The ground state $T = 0$

$T_c = 166 \text{ MeV}$

Chiral symmetry restored (for $m_{u,d,s} = 0$):

$\langle \bar{\psi} \psi \rangle \approx 0$

Crossover region for finite quark masses

2nd order P.T. for zero quark masses

Quark-gluon-plasma at high temperatures

High temperature and large chemical potential

Colour superconductivity and colour flavour locking

Relativistic Heavy Ion Collisions
The QGP

- Raise temperature, keep chem. potential at $\mu = 0$
- Hadronic matter: dominated by pions as lightest mesons
- QGP: high-energy plasma of essentially free quarks and gluons, chiral symmetry restored
The QGP

- Raise temperature, keep chem. potential at $\mu = 0$
- Hadronic matter: dominated by pions as lightest mesons
- QGP: high-energy plasma of essentially free quarks and gluons, chiral symmetry restored
- Assumptions
 - Ignore interactions in hadronic phase
 - Only pions formed in hadronic phase
The QGP

- Raise temperature, keep chem. potential at $\mu = 0$
- Hadronic matter: dominated by pions as lightest mesons
- QGP: high-energy plasma of essentially free quarks and gluons, chiral symmetry restored
- Assumptions
 - Ignore interactions in hadronic phase
 - Only pions formed in hadronic phase
- Find transition: Helmholtz free energy $\Omega = -pV$ minimized
- Pressure is maximized \rightarrow calculate pressure in the two phases
QGP transition: counting degrees of freedom

For non-interacting fields (n_f number of degrees of freedom):

Bosonic field \(3P = \epsilon_B = n_f \frac{\pi^2}{30} T^4\)

Fermionic field \(3P = \epsilon_F = n_f \frac{7}{8} \frac{\pi^2}{30} T^4\)
QGP transition: counting degrees of freedom

For non-interacting fields (n_f number of degrees of freedom):

Bosonic field

$$3P = \epsilon_B = n_f \frac{\pi^2}{30} T^4$$

Fermionic field

$$3P = \epsilon_F = n_f \frac{7}{8} \frac{\pi^2}{30} T^4$$

- We find

$$T_c \approx 150\text{MeV}$$
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

Low temperature and finite density — The ground state \(T = 0 \)

Low temperature and finite density — The situation for low temperatures

Quark-gluon-plasma at high temperatures

High temperature and large chemical potential

Colour superconductivity and colour flavour locking

Relativistic Heavy Ion Collisions

QGP transition: counting degrees of freedom

For non-interacting fields (\(n_f \) number of degrees of freedom):

Bosonic field

\[3P = \epsilon_B = n_f \frac{\pi^2}{30} T^4 \]

Fermionic field

\[3P = \epsilon_F = n_f \frac{7}{8} \frac{\pi^2}{30} T^4 \]

- We find

\[T_c \approx 150 \text{MeV} \]

- First thought to be of first order

- Not seen experimentally!
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

Low temperature and finite density — The ground state $T = 0$
Low temperature and finite density — The situation for low temperatures
Quark-gluon-plasma at high temperatures
High temperature and large chemical potential

Colour superconductivity and colour flavour locking

Relativistic Heavy Ion Collisions

QGP transition: counting degrees of freedom

For non-interacting fields (n_f number of degrees of freedom):

Bosonic field \[3P = \epsilon_B = n_f \frac{\pi^2}{30} T^4 \]

Fermionic field \[3P = \epsilon_F = n_f \frac{7}{8} \frac{\pi^2}{30} T^4 \]

We find \[T_c \approx 150 \text{MeV} \]

First thought to be of first order

Not seen experimentally!

Current view:

- Zero quark mass Second order
- Non-zero quark mass No chiral symmetry \rightarrow no symmetry breaking \rightarrow crossover region
Summary of known transitions

- Two lines of first order phase transitions along $T \approx 0$ and $\mu > 0$
- Second order p.t. (massless quarks) or crossover (finite quark masses) along $\mu \approx 0$ and $T > 0$
- Chiral condensate $\langle Q\bar{Q} \rangle$: vanishes in high-T- and high-μ-phases
Summary of known transitions

- Two lines of first order phase transitions along $T \approx 0$ and $\mu > 0$
- Second order p.t. (massless quarks) or crossover (finite quark masses) along $\mu \approx 0$ and $T > 0$
- Chiral condensate $\langle Q\bar{Q} \rangle$: vanishes in high-T- and high-μ-phases
- Chiral symmetry restoration in the region of high temperature and high chem. potential?
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

Low temperature and finite density — The ground state $T = 0$
Low temperature and finite density — The situation for low temperatures
Quark-gluon-plasma at high temperatures
High temperature and large chemical potential

Colour superconductivity and colour flavour locking

Relativistic Heavy Ion Collisions
Chiral symmetry restoration in the phase diagram

- **Massless quarks:**
 - Expect **one** line of phase transitions between regions of $\langle Q\bar{Q} \rangle = 0$ and $\langle Q\bar{Q} \rangle \neq 0$
 - Line of 2nd order p.t.s from the QGP transition and of 1st order p.t.s from the $\mu = \mu_1$ transition merge!
 - Meet in a tricritical point
Chiral symmetry restoration in the phase diagram

- Massless quarks:
 - Expect **one** line of phase transitions between regions of $\langle Q\bar{Q} \rangle = 0$ and $\langle Q\bar{Q} \rangle \neq 0$
 - Line of 2nd order p.t.s from the QGP transition and of 1st order p.t.s from the $\mu = \mu_1$ transition merge!
 - Meet in a tricritical point

- Finite quark masses:
 - Chiral symmetry is never exactly restored
 - Line of first order phase transitions from $\mu = \mu_1$ does not terminate in tricritical point
The Phases of Quantum Chromodynamics

The QCD Phase Diagram — schematically

Introduction

The QCD Phase Diagram

Low temperature and finite density — The ground state $T = 0$
Low temperature and finite density — The situation for low temperatures
Quark-gluon-plasma at high temperatures
High temperature and large chemical potential

Colour superconductivity and colour flavour locking

Relativistic Heavy Ion Collisions

- $T_c = 166\, MeV$
- Chiral symmetry restored (for $m_{u,d,s} = 0$): $\langle \bar{\psi} \psi \rangle \approx 0$
- 2nd order P.T. for zero quark masses
- 1st order P.T.

chiral symmetry broken: $\langle \bar{\psi} \psi \rangle > 0$
Colour superconductivity

- Mechanism proposed for low temperatures and high chemical potentials: asymptotic freedom at high densities
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

Colour superconductivity and colour flavour locking
Symmetry breaking due to colour superconductivity
Physical consequences of CFL

Relativistic Heavy Ion Collisions

 Colour superconductivity

- Mechanism proposed for low temperatures and high chemical potentials: asymptotic freedom at high densities
- Two major types of colour superconductivity:
 - Two-flavour colour superconductivity (2SC) Two massless quark flavours
 - Colour flavour locking Three massless quarks flavour. Interest due to chiral symmetry breaking by other mechanism than chiral condensate.
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

Colour superconductivity and colour flavour locking

Symmetry breaking due to colour superconductivity

Physical consequences of CFL

Relativistic Heavy Ion Collisions

Colour superconductivity

- Mechanism proposed for low temperatures and high chemical potentials: asymptotic freedom at high densities
- Two major types of colour superconductivity:
 - Two-flavour colour superconductivity 2SC Two massless quark flavours
 - Colour flavour locking Three massless quarks flavour. Interest due to chiral symmetry breaking by other mechanism than chiral condensate.
- Densities difficult to produce in earthly laboratories
- Only due to gravitational collapse: neutron star
Ordinary superconductivity

- Ordinary solid: ideal, non-interacting Fermi gas approximation becomes valid for small temperatures
- For some materials: at T_c, weak attractive force (mediated by ion lattice) leads to formation of condensate of Cooper pairs
- Described by BCS theory for type I superconductivity
- Physical effects:
 - Gap in the excitation spectrum: binding energy of Cooper pairs
 - Zero electrical resistance
 - Meissner-Ochsenfeld effect: expulsion of magnetic fields
Superconductivity in the QCD case

- Limit of high density: asymptotic freedom, expect free Fermi gas
Superconductivity in the QCD case

- Limit of high density: asymptotic freedom, expect free Fermi gas
- Attractive forces lead to formation of quark pair condensate:
 - Perturbative effects have small contribution
 - Non-perturbative (instanton) effects, proposed in late 1990s, have very large effect

\[\text{Energy gap: } \Delta = E^2, \text{ } E \text{ binding energy} \]

\[\text{Estimate: } \Delta \approx 100 \text{ MeV} \]
Superconductivity in the QCD case

- Limit of high density: asymptotic freedom, expect free Fermi gas
- Attractive forces lead to formation of quark pair condensate:
 - Perturbative effects have small contribution
 - Non-perturbative (instanton) effects, proposed in late 1990s, have very large effect
- Colour charge superconductivity and Meissner-Ochsenfeld are not observable
- Energy gap: $\Delta = \frac{E}{2}$, E binding energy
- Estimate: $\Delta \approx 100$ MeV
Colour flavour locking

- Single-gluon exchange and non-perturbative effect provide attractive force between quarks
- Leads to formation of a condensate (analogous to Cooper pairs; \((\alpha, \beta)\) refer to colour, \((i, j)\) to flavour):

\[
\langle \psi_{iL}^{a\alpha} (\vec{p}) \psi_{jL}^{b\beta} (-\vec{p}) \epsilon_{ab} \rangle = -\langle \psi_{iR}^{a\alpha} (\vec{p}) \psi_{jR}^{b\beta} (-\vec{p}) \epsilon_{ab} \rangle \propto \epsilon^{\alpha\beta} A \epsilon_{ijA}
\]
Colour flavour locking

- Single-gluon exchange and non-perturbative effect provide attractive force between quarks
- Leads to formation of a condensate (analogous to Cooper pairs; \((\alpha, \beta)\) refer to colour, \((i, j)\) to flavour):
\[
\langle \psi_{iL}^{a\alpha}(\vec{p}) \psi_{jL}^{b\beta}(-\vec{p}) \epsilon_{ab} \rangle = -\langle \psi_{iR}^{a\alpha}(\vec{p}) \psi_{jR}^{b\beta}(-\vec{p}) \epsilon_{ab} \rangle \propto \epsilon_{\alpha\beta}^{A} \epsilon_{ijA}
\]
- Use
\[
\epsilon_{\alpha\beta}^{A} \epsilon_{ijA} = \delta_{i}^{\alpha} \delta_{j}^{\beta} - \delta_{j}^{\alpha} \delta_{i}^{\beta}
\]
- Locking of flavour and colour indices!
The Phases of Quantum Chromodynamics

Introduction

The QCD Phase Diagram

Colour superconductivity and colour flavour locking

Symmetry breaking due to colour superconductivity

Physical consequences of CFL

Relativistic Heavy Ion Collisions

Colour flavour locking

- Single-gluon exchange and non-perturbative effect provide attractive force between quarks
- Leads to formation of a condensate (analogous to Cooper pairs; \((\alpha, \beta)\) refer to colour, \((i, j)\) to flavour):
 \[
 \langle \psi_{iL}^{a\alpha}(\vec{p})\psi_{jL}^{b\beta}(-\vec{p})\epsilon_{ab} \rangle = -\langle \psi_{iR}^{a\alpha}(\vec{p})\psi_{jR}^{b\beta}(-\vec{p})\epsilon_{ab} \rangle \propto \epsilon^{\alpha\beta A}\epsilon_{ijA}
 \]
- Use
 \[
 \epsilon^{\alpha\beta A}\epsilon_{ijA} = \delta_i^\alpha \delta_j^\beta - \delta_i^\alpha \delta_j^\beta
 \]
- Locking of flavour and colour indices!
- Breaking of symmetries:
 \[
 SU(3)_c \times SU(3)_L \times SU(3)_R \rightarrow SU(3)_{\text{color},L,R}
 \]
- Chiral symmetry is broken, but by another mechanism
Pseudo-Goldstone bosons

- Spontaneous symmetry breaking:
 - Global symmetry: massless Goldstone boson
 - Local gauge symmetry: gauge bosons acquire mass
Pseudo-Goldstone bosons

- Spontaneous symmetry breaking:
 - Global symmetry: massless Goldstone boson
 - Local gauge symmetry: gauge bosons acquire mass
- In this case: several symmetry breakings!
 - Colour symmetry broken \rightarrow gluons acquire mass
Pseudo-Goldstone bosons

- Spontaneous symmetry breaking:
 - Global symmetry: massless Goldstone boson
 - Local gauge symmetry: gauge bosons acquire mass
- In this case: several symmetry breakings!
 - Colour symmetry broken → gluons acquire mass
 - Chiral symmetry broken: an octet of Goldstone bosons, oscillations of the diquark condensate
Introduction

The QCD Phase Diagram

Symmetry breaking due to colour superconductivity

Physical consequences of CFL

Relativistic Heavy Ion Collisions

The Phases of Quantum Chromodynamics

Pseudo-Goldstone bosons

- Spontaneous symmetry breaking:
 - Global symmetry: massless Goldstone boson
 - Local gauge symmetry: gauge bosons acquire mass
- In this case: several symmetry breakings!
 - Colour symmetry broken \rightarrow gluons acquire mass
 - Chiral symmetry broken: an octet of Goldstone bosons, oscillations of the diquark condensate
- If quark masses are non-zero, pseudo-Goldstone bosons are created with finite, but small, masses
- Can be considered as physical mesons with finite, computable masses: at $\mu = 400$ MeV, $m_{K^\pm} \approx 5 \ldots 20$ MeV
Neutron star cooling

- Neutron star:
 - Star between 1.44x and 3x mass of the sun
 - Density $\approx 10^{12}\text{kg/cm}^3$ in the core
 - Radius 10 km
Neutron star cooling

- Neutron star:
 - Star between 1.44x and 3x mass of the sun
 - Density $\approx 10^{12}$ kg/cm3 in the core
 - Radius 10 km

- Neutron star cooling can be observed, e.g. fitting thermal radiation spectrum to blackbody radiation

- Takes place via neutrino emission

- Rate of cooling depends on heat capacity
Neutron star cooling

- Neutron star:
 - Star between 1.44x and 3x mass of the sun
 - Density $\approx 10^{12}\text{kg/cm}^3$ in the core
 - Radius 10 km

- Neutron star cooling can be observed, e.g. fitting thermal radiation spectrum to blackbody radiation

- Takes place via neutrino emission

- Rate of cooling depends on heat capacity

- In CFL: all quarks acquire gap with $\Delta \gg T$, leading to low thermal excitation

- No contribution to specific heat from quarks, specific heat dominated by electrons and pseudo-Goldstone bosons
Objective: study QGP at high temperatures and low chemical potentials

Collide heavy nuclei (sulphur, lead, gold) with high energies (A: nucleus weight):

- Old: SPS @ CERN: CM energy 2A \ldots 18 A GeV
- Current: RHIC @ Brookhaven, NY: 200A GeV
- Future: LHC (ALICE) @ CERN: 5500A GeV

Other experiments will at some point attempt to study high-density matter, i.e. CBM/FAIR at GSI, Darmstadt
Stages of a RHIC collision

(a)

(b)

(c)

(d)
Thank you for your attention